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Abstract— In this paper, a decentralized control strategy for ~ Distributed state estimation via a Kalman filtering appioac
networked multi-robot systems that allows the tracking of he s presented in [7].
team centroid and the relative formation is presented. The From the control perspective of MRS, it is interesting to

proposed solution consists of a distributed observer-comller deal with a i . f d ibi f |
scheme where, based only on local information, each robot eal with a ime-varying relerence describing, 1or example

estimates the collective state and tracks the two assignedmdrol ~ the centroid and the shape of the team, i.e., the formation
variables. We provide a formal stability analysis of the obsrver-  statistics. A nice attempt to control a collective variable

controller scheme and we relate convergence properties th¢  pressed in terms of formation statistics by resorting tosa di
Egp\?;ﬁggtgftme;onnectrl]vuty graph. Experiments are preseted  yrijyted controller can be found in and [18]. Such approach
pproach. uses a distributed estimator of the actual collective éeia
to be controlled, which is based on the dynamic average
consensus protocol proposed in [17]; however, asymptotic
The use of Multi-Robot Systems (MRSs) to accomplistiracking is not guaranteed unless the goal is constant or
autonomous missions is receiving growing attention in thbas poles in the left half plane. Decentralized estimation
recent years. A MRS exhibits several advantages with réspeid control are also investigated in [16] in the framework
to a single robot in term of flexibility, fault tolerance, of linear state feedback control. It is worth remarking the
redundancy, thus increasing the possibility to succdgsfulwork on spatially distributed gradients of collective atijee
accomplish the assigned mission. Focusing the attention fignctions in [9]. The problem of tracking a time-varying
the case of robots with limited sensing and communicatiofeference state for each agent has been investigated in [15]
ranges leads to what is usually defined as decentralized @nd in the recent paper [6] the dynamic consensus problem
distributed control. In a decentralized controller eachoto is solved by proposing a signum-based controller.
has access, via direct sensing or via communication with its This paper builds on the results of [2] where we addressed
neighbors, to only partial information of the state. As arthe tracking of the weighted centroid by resorting to a
example, when the overall state is given by the positions @listributed controller. Here, we extend the work by adding
all the robots of the MRS, it is assumed that each robot onipe possibility to track also the relative formation. The
knows the positions of a subset of robots (its neighbors). llommon idea is that each robot estimates the collective
such a case, if the control objective giobal or collective, state via a local observer; the estimated value is used in
i.e., it concerns the whole MRS, it is necessary to implemeiat proper controller in charge of tracking a reference in term
a form of coordination among the robots. of centroid and relative formation variables. Convergeoice
One typical distributed control problem is tisensensus,  Pboth estimation and tracking errors is analytically praven
i.e. the problem of reaching an agreement regarding a pertdt is worth remarking that, as in [18], tracking is achieved
variable dependent on the state of all the agents; recepit using distributed estimation and control, although here
studies on this subject are summarized in the books [13]istead of the common goal function, the whole collective
[14]. A consensus is stationary if the controlled referencetate is estimated by each robot of the team. The proposed
variable is constant and function of the initial state; on@pproach is validated in experiments with a distributedtimul
non-linear consensus protocol, for fixed topologies, isgiv robot system composed of five Khepera Ill mobile robots.
in [5]. Those results have been further extended in [8] for a Il. BACKGROUND

more general class of consensus functions. Distributed for ) _
mation keeping and rendez-vous also belong to the categoryCOnSIder a system composed &f agents, where théth

of consensus problems [12]; the results in [11] are relate%gem’s state Is de.noted by e-R". I? is assumed that. each
to the stability analysis of several decentralized stieteg agent is characterized by a single-integrator dynamics
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Information exchange between the agents can be modeled such thatos = Joa,

as a network of agents described by a grggé, V) charac- -1, I, 0, --- 0,

terized by its topology [10], i.e., the sét of the indexes o, -I, I, --- 0,

labeling the N vertices (nodes), the set of edges (arcs) Jo = } . (6)
€ =V xV, and the {V x N) adjacency matrixA = {a;;}, :

such that;; = 1 if there exists an arc from vertgxto vertex 0, e 0, I, I,

i, otherwisea;; = 0. If all the communication links between i can be easily recognized that both the Jacobian matrices
the agents are bi-directional, the graph is calledirected g6 full-row rank matrices.

(ie.,(7,5) € €= (5,7) € €), otherwise, it is calledirected.  The control objective for the whole system Bf agents
Moreover, the graph topology can be assumed either fixgdl o track a desired trajectory for the centraig, 4(t) and,

or switching. A directed graph is callestrongly connected 5 the same time, achieve an assigned formation (possibly

if any two distinct nodes of the graph can be connected Vigme.-varying), - (t). The desired velocities; 4(t) and
a directed path, i.e., a path that follows the direction & th,., 4(t) are assigned as well. '

edges of the graph. An undirected graph is cadledhected A sojution can be achieved via the centralized control law
if there is an undirected path between every pair of distinct
nodes. A node of a directed graph is balanced if its in-degree u(t, @) = ui(t, @) + ua(t, @) (7)

(i.e., the number of ipcoming edges) and its o_ut-degree (i"?/yhere (=1,2)
the number of outgoing edges) are equal; a directed graph is
called balanced if each node of the graph is balanced. w(t,@) = J} (61a(t) + kie (0ra(t) — ou(x))),  (8)
It is assumed that th&h agent receives information only ) i T !
from its neighborsV; = {j € V: (j,i) € £}, and it does ke >0 are scalar gains and; = _Jl Jl‘]_l re_pre;ent
not know the topology of the overall communication grapht.he pseudomv_erses of the Ja_coblan matrices (their express
The communication topology is characterizes by tNex(?v) ~ ¢an be found in the Appen(%|x). o
Laplacian matrix,L. = {l;;}, such thatl;; = Z;V:L#i aij It can be noticed thafly J; = (J2J7)" = Onx(n-1)n:
andl;; = —a;j, i # j. The Laplacian matrix exhibits at least Where O, denotes they(x ¢) null matrix; hence
a zero eigenvalue with thé&/ x 1 vector of all onesl1y, T T
as the corresponding right eigenvector. Hence, (Ank< T172 = Onx(v-1yn; Joy = Ow-vynxn- ()
N—1andL1ly = Oy, whereOy is the (V x 1) null vector. Equation (9) represents a condition of full compatibility
For a balanced directed graphy is also a left eigenvector (0rthogonality) of the two tasks [1]. Indeed, thanks to such
of L, i.e. 1L = 0%. If the graph is strongly connected & condition the tracking error dynamics for both the tasks is
rank L) = N —1. If the graph is undirected, the Laplacian isgiven by ( = 1,2)
§ymmetric andl posit.ive sem_idefinite; moreover, if the graph &1 = —ky .61, (10)
is connected( is a simple eigenvalue af. ’
which ensures exponential convergence to zero of the track-
ing errors,o; = 04 — o7.
Control law (7),(8) can be computed only by a centralized
The control objective is to design a distributed controtontroller, since the collective system’s state has to loe fe
technique for multi-agent systems to achieve the assignéack to compute the task functions. Hence, the main goals of

IIl. PROBLEM STATEMENT

global tasks. In this paper, the considered tasks are: the subsequent developments are to design, for each agent:
« the centroid of the system: . a state observer providing an estimate, € RV",
asymptotically convergent to the collective state,
1 . a feedback control lawu; = wu;(t,'2), such that
o1(z) = & > ai =iz, 3) o1 (x) ando,(x) respectively asymptotically converges
1=1

to o1 4(t) andoa 4(t).
Both the observer and the controller for each agent can

whereJ; € R**N" is the task Jacobian . . . .
! only uselocal information, i.e., the state and input of the

1, 7 agent itself, and the states of its neighboring agenfs,
Ji= N (lN @ I") ’ ) Moreover, it is assumed that each agent knows in advance
. . . . . . the desired task functions and their first time derivatives.
o1 =Jix, andI, is the (o x n) identity matrix.
« the formation of the system, expressed as an assigned IV. STATE OBSERVER
set of relative displacement between the agents: Let I'; be the ¢ x Nn) matrix

o) = [(ma—a1)T (ws—22)T .. (xy—2N_1)T]" ri={0n -+ In -+ On}

= Jyx, (5) i th node
and IT; be the (Nn x Nn) matrix IT, = I') I';. The
where J, € RIV-DnxNn is the Jacobian of the task, following equality holdsS"Y | IT; = I y,.



The estimate of the collective state is computed byithe with
agent {=1,..., N) via the observer win(t,1&) = 1.4(t) + kre (01.4(t) — o1 (%)), (18)

Gk | Y (e -te) + i@ 2) |+, an) o
JEN; ui72(t,i$ﬁ):J;i (d’de(t)"' kQ,C(UQ,d(t)_UQ(i;%))) ’ (19)

wherek, > 0 is a scalar gain to be properly selected and wherek,. > 0 (I = 1,2) are scalar gains to be selected.

uy (t, ‘%) The input estimate in (12), used by the observer (11),
us(t, ‘@) becomes{=1,...,N)
[ 14 Nn
u(t,'®) = ) eR (12) 1
. _tiA:- kc __1T IniA
’U,N(t,lii‘) u]( ’ .’13) o'l,d+ 1, (o'l,d N( N® ) :E) +

t . . i
represents the estimate of the collective input availabtbe T35 (G2at ke (@20 0a2(@))),  (20)
ith agent. The exact expression fa(t, ‘z) will be detailed WhereJT can be computed via (35)—(37) in the Appendix.
in the remainder depending on the control law. Notice that, |n the f0||0W|ng, we derive the dynamics of the error
to implement the observer (11), the agent uses only loc@hriabless; = o4 — oi(z) € R" andoy = 094 —

information sincelI,; selects only the th component of the os(z) € RV, while the dynamics of the state estimation
collective statez, i.e., the agent's own state. In addition,error z* is given in (16).

exchange of the neighbors estimates is required. Namely, by taking into account equations (1),(3)—(4) and
For the sake of notation compactness, the state estlma(gs) —(19), the following equalities hold
can be stacked into the vectar' = [1z7 ... Nz"]" e N N
RN*n: thus, a stacked vector of estimation errors can beg, = 14— 1 & =014 — 1 wi(t, ')
deﬁned as well N =1 N =1
1z r—1a . 1 o . i
25 x—2% = Ul,d_NZ(Ul,d+kl,c(01,d_0'1(133)))4—
T=.|= : =1lyQx—a&", (13) v
: : 1 v i
N z—Na _NZJQ;L' (62,4 + koc(02,0 — o2('®))) .
i=1
where the symbof represents the Kronecker product.  The apove equality can be further elaborated by adding and
The collective estimation dynamics is given by subtracting the task functiosr;(z) = Jiz in the first
Ak ok * ok ~ K N
&' = ko (L@ Ing) 2" +koIl'@" +4",  (14) g0 ation and by noticing tha} ~ J% ; = O, (v—1)n
whereIT* = diag {IT; ... IIy} and i=1
N
1ﬂ(t, 1:%) 1 ,C 1 k2 c
wim | = z 3 s
wr(t,2") = _ eRM™, (15) =1 N
Na(t, Vi) N . )-ea(@)+
Taking into account the property of the Kronecker product . i
(Lo Iyn,)(ly®@x) = L1y ® @ and the property of the — o m)) :
LaplacianL1y = Oy, the estimation error dynamics can be
derived from (2) and (13) as Hence, the first task error dynamlcs is given by
x ~ N N
=k (LRIn, + I " +1y@u—u". (16 . o ki i ka2 i -
( N ) N (16) G1=—ky (O — ZJl i ;[ ZJ;Z-JQ @ (21)

Matrix (L ® I, + IT*) plays a central role to determine
the convergence of the estimation error dynamics. In [2] As for the second task error dynamics, the following chain
|t |S ShOWﬂ that(L ® INn + H*) |S pOSItlve def|n|te for Of equa||t|es can be dev|sed
connected undirected graphs, as well as for directed badanc

. N
and strongly connected topologies. P o — Joi = Gog— Jo Z 'Tu,
V. DECENTRALIZED CONTROL LAW N i=1
In view of the centralized control law (7),(8) and equalite  _ 4, _ y, ZF;F (61.a+ ke (1.0 — Ul(ii))) T
(34) in the Appendix, the control input of theth agent is " = " " "

computed according to the following control law N o ,
) ) ) —J FiJid',d+k,c oy4—0s('x .
wi(t, %) = wir(t, &) + uia(t, @), (17) ’ Z 2i (F2d+ o (920 = 02(2)))



arbitrarily tuned by choosing,. In view of (12), (18) and

N N
; T _ Tyt
Since J2 Zri = O-1)nxn and Jy Zri Jai = (19), inequality (25) yields

=1 i=1

Jng = I(n_1)n, the above equality reduces to N N
N Vo= [l (|7 + > D] (u; (') — uy('a)
= _kl,cJQ ZF;T (0‘1,,1 — Ul(ii)) + i=1 j;1
i=1 ~ 112 1 k1e is s
N ‘ :—/\OHcc*H + gt g, (Zm—Jcc)—l-
_kQ,cJQ ZF?J;l (0'2,d — Ug(lii‘)) . ; ]Zzl ! N
i=1 N N
i T [ ~
By adding and subtracting the task functioas(z) = +z; ; &j I35 2kre ('@ —7%)
N 1= =
Jix = 1/NZFiTm and o2(x) = Jox in the first and k c| 1l i o
= - <o [l + = ZH wHZH —a| +
second summation, respectively, yields
T i iy _ s
R L oo St S ol
1= Jj=

i=1
N .
TN~ where the2-norm has been used for vectors and matri-
r; Z Z. (22)  ces. Since/||J1]] < VN, ||[J2] < 2 and HJQJJQH =

HF JTJQH = ||| = 1, the following inequalities hold

kl,c

_NJ2

K2

N
=1 j=1

V1. STABILITY PROOF

Convergence of the observer scheme is carried out in the 2 N
case of a undirected graph with connected and fixed topology. V,<— ), || H 4+ e ZH“ Z H z|| + H]‘BH)
To the purpose, a candidate Lyapunov function composed by = =1
three terms, each corresponding to one of the relevant error XN
variables in the system, will be considered. + kz,cZH%’ Z |‘&| + |’&|)

The first term in the candidate Lyapunov function is related = j=1
to the collective state estimation error

Ao [J&=|” + kZ Kl Z (2] + )

v, = %wTw (23)
The time derivative ofl, along the system’s trajectories <A ||"3 H + Nke H‘B || +
is given by 2 a2
. L N eSS ()
Vo = —kox* (L®In,+IT)x*+ (24) i=1 j=1
2 (In @ Ing)u— ). = (o —2p0) |||, (26)

The matrix L ® Iy, is symmetric and positive semidef- wherek, = k; . + k2. andp, = Nk..
inite, since the communication graph is undirected and The second term of the candidate Lyapunov function is
connected. In fact, in such a cade,admitsn — 1 positive given by
eigenvalues and one simple zero eigenvalue; thus, I v,
has Nn(N — 1) positive eigenvalues antyn zero regular
eigenvalues. MoreovedI is a diagonal matrix withNn
non-null (unitary) elements along the main diagonal; thus,

Vl.,c = ’f&l' (27)

N =

In view of (21), the following chain of inequalities holds

it is symmetric and positive semidefinite, since it adniits kl oot k2 oo

eigenvalues equal ta and N2n — Nn zero eigenvalues. VA, =~k H01H - lez Z’]Q 1J2 x

Hence, the sum of the two matrices is positive semidefinite i=1

as well. IndeedL ® I y,, + IT is positive definite since the T T R -

intersection of their null spaces is the the null vector [1]. S —kielloull +\/jV HUl”Z ||ch||+ N H‘TIHZHZ“@H
1=1 1=1

Hence,V, can be upper bounded as follows )
< —kiclloall” + ke lloa ] ||z

N
2 i~T i N N s
+y ‘@ (u—"a),  (25) = ke |6 + 201 ]| &7 (28)

=1

where \, = koA and A, is the smallest eigenvalue of Wherepi,c = k/2.
(L @ Iy, + IT). It is worth noticing that\, is function of The last term of the Lyapunov function candidate is
the Laplacian (i.e., depends on the network topology) and 1
. . . ~T ~
of the gaink,; thus, for a given network topology, it can be Vae = 50500 (29)

x*

Vo S _)\o‘




By taking into account (22), its time derivative can beassigneda priori and robots communicate according to it.
bounded as follows Namely, the static and undirected communication graph in
Fig. 1-(right) has been enforced.

N N
Va,e=—ka,c [|G2]|” — ﬁarerzz rry iz +
=1 Jj=1

N
—ky o3 d2 Y LTS T
i=1

9 N N
~ 12 ~ 15,
Shael|Gaf Al DY IIE]+

i=1 j=1

N
~ i~
+ ka,c||0'2|| Z ” a}|| Fig. 1. Left: picture of the five Khepera lll robots used in #ageriment.

N B if*l Right: the undirected communication topology of the experit.
ko [62]* + 202,52l ), (30)
with py o = kcN. . . In the following experiment the team centroid is com-
Hence, the Lyapunov function candidate has the form manded to move along a desired U-shape path with initial
V=V, 4 Vie+ Vo (31) and final positiong1.4, 1.4] m and[2.0, 1.4] m and an over-

_ o _ _ _ all length of 5.2 m; the velocity of the centroid follows
Its time derivative along the error dynamics trajector8)( a trapezoidal profile with cruise speed 0f22m/s. The
(21) and (22) can be upper bounded via (26), (28) and (3@ksigned robot formation is a static circular formationd an
V< (A — 2p0)||53*||2—k17c||5'1||2—k216||5'2||2 4 the parameters,, _kLc andks . in (11), (18) and (19) have
9 ~ | + 2pa.0| 62| |- been set, respectively, 6, 0.5 and0.5.
+2p1c[[e1[[[Z7]] + 2p2.cll02 \ o _
A low-level motion controller is in charge of generating

Thus: the angular and the linear velocity of the robots to track the

. 1" T Ao — 2Nke —ko/2 —NE[ "] assigned linear vglocity"f:(_)mmanqu output l;y _equa}tion a7,

v<—||&1 —ke/2 krc 0 |64]||. (32) moreover, a reactive collision avoidance technique iratiegl
EX — Nk, 0 koo ||l in the control and activated when the relative distance gmon

i the robots is lower than a certain threshold.
Hence,V is definite negative if and only if

T1 Y1
1 ki | NEZ 4 4 ~
ko > — [ 2Nk, + —— + <, 33 . S
°7 I < T Ak | 2k, @33 2 2 -
. . . % 20 40 60 80 % 20 40 60 80
that represents a conservative condition to choose thes gain,

ko, k1,. andk; . to guarantee global exponential stability of |
the equilibriumz™ = Oz, 61 = 0,, G2 = O(y_1),. It is o
worth remarking that, for given control gains, there always 4
exists an observer gain satisfying (33). Al
Remark 6.1: Following the results presented in [2], [3], o
the stability of the overall closed-loop system is presdrve
also in the case of directed topologies, provided that the,
graph is strongly connected, and in the case of switching
topologies, provided that in each instantaneous configurat 0 5 0§ 60 80
the graph is balanced and strongly connected (in the case,|

:
of directed topology) or simply connected (in the case of Oof [ - —trug Na

- 20 40 60 80 0 20 40 60 80
undirected topology). Fig. 2. Plot of the estimated position of the teafiz( k = 1,..., 5)

computed by the vehicles. Subplat §) shows the time history O’Fa%j,
VII. EXPERIMENTAL RESULTS k=1,..., 5 together with the true valug; (the black dashed line). It is

The proposed distributed control approach has been e3gsumed thak; = [z;, yi]".

perimentally tested on the multi-robot system composed by Fig. 2 shows the position components of the overall team
five Khepera Il robots in Fig. 1-(left), that are small sizeas estimated by the different robots. It is worth noticing
(12 cm diameter) differential drive mobile robots. Each robothat, after an initial transient, all the estimates conesrtp

is equipped with a Hokuyo URG-04LX-UGO01 Laser Rangehe true values. Fig. 3-(left) shows the desired centroid of
Finder (LRF) and adopts the software module developetie team together with the desired formation at three time
in [4] to perform localization in indoor environment basednstants. In Fig. 3-(right) the dotted lines show the reahpa
on Extended Kalman Filter. Each robot is equipped with af the robots £;) while the solid lines represent the paths of
IEEE 802.11 wireless card and communicate with its neighall the robots as estimated by one of the)( The vectors
bors via a wireless ad-hoc network. The adjacency matrix is(tg)|;,—0 (i = 1,...,5) in (11) are set to zero, where




to is initial time instant. Finally, Fig. 4 shows the errors of [3]
the task functiono; and 5. The multimedia attachment
accompanying the paper shows one experiment execution.

= = = Desired centroid
X Start
¢ Interm
| O End
¢
<
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% o
' 1
i i
' 1
' 1
' i
' 1
' 1
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x ;0 |
1
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0 05 1 15 2 25 3 % 05 1 15 2 25 3

Fig. 3. Left. Desired behavior. Right. Paths of the robotasueed (dotted
lines) and as estimated by robt(solid line).
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Fig. 4. Errors of centroidg:) and formation &2) task functions on the
top and bottom, respectively.

VIII. CONCLUSIONS

In this paper, a decentralized controller-observer apgroa
for formation control of multi-agent systems is proposed.
Each agent estimates the collective state of the system by
using only local information, and the estimated state isluse The pseudoinverses of; andJ, are
to cooperatively track a global task, defined in terms of
system’s centroid and geometrical formation. Convergence
of the closed-loop system has been proven via a Lyapunov
approach, while the validation is supported by experimenta
results with a distributed multi-robot system.
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APPENDIX

1]
Ji=1y®I,, J)= J; : (34)
7
b= {_ (NA—[ 1)In (NA—[ 2)In ——In], (35)
Ty = {%In %In (N]; 1)14 ., (36)
and, fori=2,...,N -1
[%In - %In} (37)



