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Abstract— In this paper, a decentralized control strategy for
networked multi-robot systems that allows the tracking of the
team centroid and the relative formation is presented. The
proposed solution consists of a distributed observer-controller
scheme where, based only on local information, each robot
estimates the collective state and tracks the two assigned control
variables. We provide a formal stability analysis of the observer-
controller scheme and we relate convergence properties to the
topology of the connectivity graph. Experiments are presented
to validate the approach.

I. I NTRODUCTION

The use of Multi-Robot Systems (MRSs) to accomplish
autonomous missions is receiving growing attention in the
recent years. A MRS exhibits several advantages with respect
to a single robot in term of flexibility, fault tolerance,
redundancy, thus increasing the possibility to successfully
accomplish the assigned mission. Focusing the attention to
the case of robots with limited sensing and communication
ranges leads to what is usually defined as decentralized or
distributed control. In a decentralized controller each robot
has access, via direct sensing or via communication with its
neighbors, to only partial information of the state. As an
example, when the overall state is given by the positions of
all the robots of the MRS, it is assumed that each robot only
knows the positions of a subset of robots (its neighbors). In
such a case, if the control objective isglobal or collective,
i.e., it concerns the whole MRS, it is necessary to implement
a form of coordination among the robots.

One typical distributed control problem is theconsensus,
i.e. the problem of reaching an agreement regarding a certain
variable dependent on the state of all the agents; recent
studies on this subject are summarized in the books [13],
[14]. A consensus is stationary if the controlled reference
variable is constant and function of the initial state; one
non-linear consensus protocol, for fixed topologies, is given
in [5]. Those results have been further extended in [8] for a
more general class of consensus functions. Distributed for-
mation keeping and rendez-vous also belong to the category
of consensus problems [12]; the results in [11] are related
to the stability analysis of several decentralized strategies.
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Distributed state estimation via a Kalman filtering approach
is presented in [7].

From the control perspective of MRS, it is interesting to
deal with a time-varying reference describing, for example,
the centroid and the shape of the team, i.e., the formation
statistics. A nice attempt to control a collective variableex-
pressed in terms of formation statistics by resorting to a dis-
tributed controller can be found in and [18]. Such approach
uses a distributed estimator of the actual collective variable
to be controlled, which is based on the dynamic average
consensus protocol proposed in [17]; however, asymptotic
tracking is not guaranteed unless the goal is constant or
has poles in the left half plane. Decentralized estimation
and control are also investigated in [16] in the framework
of linear state feedback control. It is worth remarking the
work on spatially distributed gradients of collective objective
functions in [9]. The problem of tracking a time-varying
reference state for each agent has been investigated in [15],
and in the recent paper [6] the dynamic consensus problem
is solved by proposing a signum-based controller.

This paper builds on the results of [2] where we addressed
the tracking of the weighted centroid by resorting to a
distributed controller. Here, we extend the work by adding
the possibility to track also the relative formation. The
common idea is that each robot estimates the collective
state via a local observer; the estimated value is used in
a proper controller in charge of tracking a reference in term
of centroid and relative formation variables. Convergenceof
both estimation and tracking errors is analytically proven.
It is worth remarking that, as in [18], tracking is achieved
by using distributed estimation and control, although here,
instead of the common goal function, the whole collective
state is estimated by each robot of the team. The proposed
approach is validated in experiments with a distributed multi-
robot system composed of five Khepera III mobile robots.

II. BACKGROUND

Consider a system composed ofN agents, where theith
agent’s state is denoted byxi ∈ R

n. It is assumed that each
agent is characterized by a single-integrator dynamics

ẋi = ui, (1)

whereui ∈ R
n is the input vector. The collective state is

given byx =
[
xT
1 . . . xT

N

]T ∈ R
Nn and the collective

dynamics is then expressed as

ẋ = u, (2)

whereu =
[
uT
1 . . . uT

N

]T ∈ R
Nn is the collective input.



Information exchange between the agents can be modeled
as a network of agents described by a graphG(E ,V) charac-
terized by its topology [10], i.e., the setV of the indexes
labeling theN vertices (nodes), the set of edges (arcs)
E = V ×V , and the (N ×N ) adjacency matrix,A = {aij},
such thataij = 1 if there exists an arc from vertexj to vertex
i, otherwiseaij = 0. If all the communication links between
the agents are bi-directional, the graph is calledundirected
(i.e., (i, j) ∈ E ⇒ (j, i) ∈ E), otherwise, it is calleddirected.
Moreover, the graph topology can be assumed either fixed
or switching. A directed graph is calledstrongly connected
if any two distinct nodes of the graph can be connected via
a directed path, i.e., a path that follows the direction of the
edges of the graph. An undirected graph is calledconnected
if there is an undirected path between every pair of distinct
nodes. A node of a directed graph is balanced if its in-degree
(i.e., the number of incoming edges) and its out-degree (i.e.,
the number of outgoing edges) are equal; a directed graph is
calledbalanced if each node of the graph is balanced.

It is assumed that theith agent receives information only
from its neighborsNi = {j ∈ V : (j, i) ∈ E}, and it does
not know the topology of the overall communication graph.
The communication topology is characterizes by the (N×N )
Laplacian matrix,L = {lij}, such thatlii =

∑N

j=1,j 6=i aij
andlij = −aij , i 6= j. The Laplacian matrix exhibits at least
a zero eigenvalue with theN × 1 vector of all ones,1N ,
as the corresponding right eigenvector. Hence, rank(L) ≤
N−1 andL1N = 0N , where0N is the (N×1) null vector.
For a balanced directed graph,1N is also a left eigenvector
of L, i.e. 1T

NL = 0
T
N . If the graph is strongly connected

rank(L) = N−1. If the graph is undirected, the Laplacian is
symmetric and positive semidefinite; moreover, if the graph
is connected,0 is a simple eigenvalue ofL.

III. PROBLEM STATEMENT

The control objective is to design a distributed control
technique for multi-agent systems to achieve the assigned
global tasks. In this paper, the considered tasks are:

• the centroid of the system:

σ1(x) =
1

N

N∑

i=1

xi = J1x, (3)

whereJ1 ∈ R
n×Nn is the task Jacobian

J1 =
1

N

(
1
T
N ⊗ In

)
, (4)

σ̇1 = J1ẋ, andIn is the (n× n) identity matrix.
• the formation of the system, expressed as an assigned

set of relative displacement between the agents:

σ2(x)=
[
(x2−x1)

T (x3−x2)
T. . . (xN−xN−1)

T
]T

= J2x, (5)

whereJ2 ∈ R
(N−1)n×Nn is the Jacobian of the task,

such thatσ̇2 = J2ẋ,

J2 =








−In In 0n · · · 0n

0n −In In · · · 0n

...
0n · · · 0n −In In







. (6)

It can be easily recognized that both the Jacobian matrices
are full-row rank matrices.

The control objective for the whole system ofN agents
is to track a desired trajectory for the centroid,σ1,d(t) and,
at the same time, achieve an assigned formation (possibly
time-varying),σ2,d(t). The desired velocities,̇σ1,d(t) and
σ̇2,d(t) are assigned as well.

A solution can be achieved via the centralized control law

u(t,x) = u1(t,x) + u2(t,x) (7)

where (l = 1, 2)

ul(t,x) = J
†
l (σ̇l,d(t) + kl,c (σl,d(t)− σl(x))) , (8)

kl,c > 0 are scalar gains andJ†
l = J

T
l

(

J lJ
T
l

)−1

represent
the pseudoinverses of the Jacobian matrices (their expression
can be found in the Appendix).

It can be noticed thatJ1J
T
2 = (J2J

T
1 )

T = On×(N−1)n,
whereOp×q denotes the (p× q) null matrix; hence

J1J
†
2 = On×(N−1)n, J2J

†
1 = O(N−1)n×n. (9)

Equation (9) represents a condition of full compatibility
(orthogonality) of the two tasks [1]. Indeed, thanks to such
a condition the tracking error dynamics for both the tasks is
given by (l = 1, 2)

˙̃σl = −kl,cσ̃l, (10)

which ensures exponential convergence to zero of the track-
ing errors,σ̃l = σd,l − σl.

Control law (7),(8) can be computed only by a centralized
controller, since the collective system’s state has to be fed
back to compute the task functions. Hence, the main goals of
the subsequent developments are to design, for each agent:

• a state observer providing an estimate,ix̂ ∈ R
Nn,

asymptotically convergent to the collective state,x;
• a feedback control law,ui = ui(t,

ix̂), such that
σ1(x) andσ2(x) respectively asymptotically converges
to σ1,d(t) andσ2,d(t).

Both the observer and the controller for each agent can
only use local information, i.e., the state and input of the
agent itself, and the states of its neighboring agents,Ni.
Moreover, it is assumed that each agent knows in advance
the desired task functions and their first time derivatives.

IV. STATE OBSERVER

Let Γ i be the (n×Nn) matrix

Γ i = {On · · · In
︸︷︷︸

i th node

· · · On}.

and Πi be the (Nn × Nn) matrix Πi = Γ
T
i Γ i. The

following equality holds
∑N

i=1 Πi = INn.



The estimate of the collective state is computed by thei th
agent (i = 1, . . . , N ) via the observer

i ˙̂x = ko




∑

j∈Ni

(
j
x̂− i

x̂
)
+Π i

(
x− i

x̂
)



+ i
û, (11)

whereko > 0 is a scalar gain to be properly selected and

i
û(t, ix̂) =








u1(t,
ix̂)

u2(t,
ix̂)

...
uN(t, ix̂)







∈ R

Nn (12)

represents the estimate of the collective input available to the
i th agent. The exact expression foriû(t, ix̂) will be detailed
in the remainder depending on the control law. Notice that,
to implement the observer (11), the agent uses only local
information sinceΠi selects only thei th component of the
collective statex, i.e., the agent’s own state. In addition,
exchange of the neighbors estimates is required.

For the sake of notation compactness, the state estimates
can be stacked into the vector,x̂

⋆ =
[
1x̂

T . . . N x̂
T
]T ∈

R
N2n; thus, a stacked vector of estimation errors can be

defined as well

x̃
⋆ =








1x̃
2x̃

...
N x̃







=








x− 1x̂

x− 2x̂

...
x− N x̂







= 1N ⊗ x− x̂

⋆, (13)

where the symbol⊗ represents the Kronecker product.
The collective estimation dynamics is given by

˙̂x⋆ = −ko (L⊗ INn) x̂
⋆ + koΠ

⋆
x̃
⋆ + û

⋆, (14)

whereΠ⋆ = diag
{
Π1 . . . ΠN

}
and

û
⋆(t, x̂⋆) =








1û(t, 1x̂)
2
û(t, 2x̂)

...
N û(t,N x̂)







∈ R

N2n. (15)

Taking into account the property of the Kronecker product
(L⊗ INn) (1N ⊗ x) = L1N ⊗ x and the property of the
LaplacianL1N = 0N , the estimation error dynamics can be
derived from (2) and (13) as

˙̃x⋆ = −ko (L⊗ INn +Π
⋆) x̃⋆ + 1N ⊗ u− û

⋆. (16)

Matrix (L⊗ INn +Π
⋆) plays a central role to determine

the convergence of the estimation error dynamics. In [2]
it is shown that(L⊗ INn +Π

⋆) is positive definite for
connected undirected graphs, as well as for directed balanced
and strongly connected topologies.

V. DECENTRALIZED CONTROL LAW

In view of the centralized control law (7),(8) and equalities
(34) in the Appendix, the control input of thei th agent is
computed according to the following control law

ui(t,
i
x̂) = ui,1(t,

i
x̂) + ui,2(t,

i
x̂), (17)

with

ui,1(t,
i
x̂) = σ̇1,d(t) + k1,c

(
σ1,d(t)− σ1(

i
x̂)

)
, (18)

and

ui,2(t,
i
x̂)=J

†
2,i

(
σ̇2,d(t)+ k2,c

(
σ2,d(t)−σ2(

i
x̂)

))
, (19)

wherekl,c > 0 (l = 1, 2) are scalar gains to be selected.
The input estimate in (12), used by the observer (11),

becomes (j = 1, . . . , N )

uj(t,
i
x̂) = σ̇1,d + k1,c

(

σ1,d −
1

N

(
1
T
N ⊗ In

)
i
x̂

)

+

J
†
2,j

(
σ̇2,d + k2,c

(
σ2,d − σ2(

i
x̂)

))
, (20)

whereJ†
2,j can be computed via (35)–(37) in the Appendix.

In the following, we derive the dynamics of the error
variablesσ̃1 = σ1,d − σ1(x) ∈ R

n and σ̃2 = σ2,d −
σ2(x) ∈ R

Nn, while the dynamics of the state estimation
error x̃⋆ is given in (16).

Namely, by taking into account equations (1),(3)–(4) and
(17)–(19), the following equalities hold

˙̃σ1 = σ̇1,d −
1

N

N∑

i=1

ẋi = σ̇1,d −
1

N

N∑

i=1

ui(t,
i
x̂)

= σ̇1,d −
1

N

N∑

i=1

(
σ̇1,d + k1,c

(
σ1,d − σ1(

i
x̂)

))
+

− 1

N

N∑

i=1

J
†
2,i

(
σ̇2,d + k2,c

(
σ2,d − σ2(

i
x̂)

))
.

The above equality can be further elaborated by adding and
subtracting the task functionσ1(x) = J1x in the first

summation and by noticing that
N∑

i=1

J
†
2,i = On×(N−1)n

˙̃σ1=−k1,c
N

N∑

i=1

(
σ1,d − σ1(

i
x̂)

)
+
k2,c
N

N∑

i=1

J
†
2,iσ2(

i
x̂)

=−k1,cσ̃1 −
k1,c
N

N∑

i=1

(
σ1(x)− σ1(

i
x̂)

)
+

− k2,c
N

N∑

i=1

J
†
2,i

(
σ2(x)− σ2(

i
x̂)

)
.

Hence, the first task error dynamics is given by

˙̃σ1=−k1,cσ̃1−
k1,c
N

N∑

i=1

J1
i
x̃− k2,c

N

N∑

i=1

J
†
2,iJ2

i
x̃. (21)

As for the second task error dynamics, the following chain
of equalities can be devised

˙̃σ2 = σ̇2,d − J2ẋ = σ̇2,d − J2

N∑

i=1

Γ
T
i ui

= σ̇2,d − J2

N∑

i=1

Γ
T
i

(
σ̇1,d + k1,c

(
σ1,d − σ1(

i
x̂)

))
+

− J2

N∑

i=1

Γ
T
i J

†
2,i

(
σ̇2,d + k2,c

(
σ2,d − σ2(

i
x̂)

))
.



Since J2

N∑

i=1

Γ
T
i = O(N−1)n×n and J2

N∑

i=1

Γ
T
i J

†
2,i =

J2J
†
2 = I(N−1)n, the above equality reduces to

˙̃σ2 =−k1,cJ2

N∑

i=1

Γ
T
i

(
σ1,d − σ1(

i
x̂)

)
+

−k2,cJ2

N∑

i=1

Γ
T
i J

†
2,i

(
σ2,d − σ2(

i
x̂)

)
.

By adding and subtracting the task functionsσ1(x) =

J1x = 1/N

N∑

i=1

Γ
T
i x and σ2(x) = J2x in the first and

second summation, respectively, yields

˙̃σ2 =−k2,cσ̃2 − k2,cJ2

N∑

i=1

Γ
T
i J

†
2,iJ2

i
x̃+

−k1,c
N

J2

N∑

i=1

Γ
T
i

N∑

j=1

i
x̃. (22)

VI. STABILITY PROOF

Convergence of the observer scheme is carried out in the
case of a undirected graph with connected and fixed topology.
To the purpose, a candidate Lyapunov function composed by
three terms, each corresponding to one of the relevant error
variables in the system, will be considered.

The first term in the candidate Lyapunov function is related
to the collective state estimation error

Vo =
1

2
x̃∗Tx̃∗. (23)

The time derivative ofVo along the system’s trajectories
is given by

V̇o = −kox̃∗T (L⊗ INn +Π) x̃∗+

x̃∗T((1N ⊗ INn)u− û).
(24)

The matrixL ⊗ INn is symmetric and positive semidef-
inite, since the communication graph is undirected and
connected. In fact, in such a case,L admitsn − 1 positive
eigenvalues and one simple zero eigenvalue; thus,L⊗ INn

hasNn(N − 1) positive eigenvalues andNn zero regular
eigenvalues. Moreover,Π is a diagonal matrix withNn
non-null (unitary) elements along the main diagonal; thus,
it is symmetric and positive semidefinite, since it admitsNn
eigenvalues equal to1 and N2n − Nn zero eigenvalues.
Hence, the sum of the two matrices is positive semidefinite
as well. Indeed,L⊗ INn +Π is positive definite since the
intersection of their null spaces is the the null vector [1].

Hence,V̇o can be upper bounded as follows

V̇o ≤ −λo

∥
∥x̃∗

∥
∥
2
+

N∑

i=1

i
x̃
T(u− i

û), (25)

where λo = koλm and λm is the smallest eigenvalue of
(L⊗ INn +Π). It is worth noticing thatλo is function of
the Laplacian (i.e., depends on the network topology) and
of the gainko; thus, for a given network topology, it can be

arbitrarily tuned by choosingko. In view of (12), (18) and
(19), inequality (25) yields

V̇o≤−λo

∥
∥x̃∗

∥
∥
2
+

N∑

i=1

N∑

j=1

i
x̃
T
j

(
uj(

j
x̂)− uj(

i
x̂)

)

=−λo

∥
∥x̃∗

∥
∥
2
+

N∑

i=1

N∑

j=1

i
x̃
T
j

k1,c
N

J1

(
i
x̂− j

x̂
)
+

+
N∑

i=1

N∑

j=1

i
x̃
T
j J

†
2,jJ2k2,c

(
i
x̂− j

x̂
)

≤−λo

∥
∥x̃∗

∥
∥
2
+

k1,c ‖J1‖
N

N∑

i=1

∥
∥ix̃

∥
∥

N∑

j=1

∥
∥ix̃− j

x̃
∥
∥+

+ k2,c

∥
∥
∥J

†
2,jJ2

∥
∥
∥

N∑

i=1

∥
∥ix̃

∥
∥

N∑

j=1

∥
∥ix̃− j

x̃
∥
∥ ,

where the2-norm has been used for vectors and matri-
ces. Since,‖J1‖ ≤

√
N , ‖J2‖ ≤ 2 and

∥
∥
∥J

†
2,jJ2

∥
∥
∥ =

∥
∥
∥Γ jJ

†
2J2

∥
∥
∥ = ‖Γ j‖ = 1, the following inequalities hold

V̇o≤−λo

∥
∥x̃∗

∥
∥
2
+

k1,c√
N

N∑

i=1

∥
∥ix̃

∥
∥

N∑

j=1

(∥
∥ix̃

∥
∥+

∥
∥jx̃

∥
∥
)
+

+ k2,c

N∑

i=1

∥
∥ix̃

∥
∥

N∑

j=1

(∥
∥ix̃

∥
∥+

∥
∥jx̃

∥
∥
)

≤−λo

∥
∥x̃∗

∥
∥
2
+ kc

N∑

i=1

∥
∥ix̃

∥
∥

N∑

j=1

(∥
∥ix̃

∥
∥+

∥
∥jx̃

∥
∥
)

≤−λo

∥
∥x̃∗

∥
∥
2
+Nkc

∥
∥x̃∗

∥
∥
2
+

+
kc
2

N∑

i=1

N∑

j=1

(∥
∥ix̃

∥
∥
2
+
∥
∥jx̃

∥
∥
2
)

=− (λo − 2ρo)
∥
∥x̃∗

∥
∥
2
, (26)

wherekc = k1,c + k2,c andρo = Nkc.
The second term of the candidate Lyapunov function is

given by

V1,c =
1

2
σ̃

T
1 σ̃1. (27)

In view of (21), the following chain of inequalities holds

V̇1,c =−k1,c ‖σ̃1‖2−
k1,c
N

σ̃
T
1J1

N∑

i=1

i
x̃−k2,c

N
σ̃

T
1

N∑

i=1

J
†
2,iJ2

i
x̃

≤−k1,c ‖σ̃1‖2+
k1,c√
N

‖σ̃1‖
N∑

i=1

∥
∥ix̃

∥
∥+

k2,c
N

‖σ̃1‖
N∑

i=1

∥
∥ix̃

∥
∥

≤−k1,c ‖σ̃1‖2 + kc ‖σ̃1‖ ‖x̃∗‖

=−k1,c ‖σ̃1‖2 + 2ρ1,c ‖σ̃1‖ ‖x̃∗‖ , (28)

whereρ1,c = kc/2.
The last term of the Lyapunov function candidate is

V2,c =
1

2
σ̃

T
2 σ̃2. (29)



By taking into account (22), its time derivative can be
bounded as follows

V̇2,c=−k2,c ‖σ̃2‖2 −
k1,c
N

σ̃
T
2 J2

N∑

i=1

Γ
T
i

N∑

j=1

i
x̃ +

−k2,cσ̃
T
2 J2

N∑

i=1

Γ
T
i J

†
2,iJ2

i
x̃

≤−k2,c ‖σ̃2‖2+
2

N
k1,c‖σ̃2‖

N∑

i=1

N∑

j=1

‖ix̃‖+

+ 2k2,c‖σ̃2‖
N∑

i=1

‖ix̃‖

≤−k2,c ‖σ̃2‖2 + 2ρ2,c‖σ̃2‖‖x̃∗‖, (30)

with ρ2,c = kcN .
Hence, the Lyapunov function candidate has the form

V = Vo + V1,c + V2,c. (31)

Its time derivative along the error dynamics trajectories (16),
(21) and (22) can be upper bounded via (26), (28) and (30)

V̇ ≤− (λo − 2ρo)‖x̃∗‖2−k1,c‖σ̃1‖2−k2,c‖σ̃2‖2 +
+2ρ1,c ‖σ̃1‖ ‖x̃∗‖+ 2ρ2,c‖σ̃2‖‖x̃∗‖.

Thus:

V̇ ≤−





‖x̃∗‖
‖σ̃1‖
‖σ̃2‖





T



λo − 2Nkc −kc/2 −Nkc
−kc/2 k1,c 0
−Nkc 0 k2,c









‖x̃∗‖
‖σ̃1‖
‖σ̃2‖



. (32)

Hence,V̇ is definite negative if and only if

ko >
1

λm

(

2Nkc +
k2c

4k1,c
+

Nk2c
2k2,c

)

, (33)

that represents a conservative condition to choose the gains
ko, k1,c andk2,c to guarantee global exponential stability of
the equilibriumx̃

⋆ = 0N2n, σ̃1 = 0n, σ̃2 = 0(N−1)n. It is
worth remarking that, for given control gains, there always
exists an observer gain satisfying (33).

Remark 6.1: Following the results presented in [2], [3],
the stability of the overall closed-loop system is preserved
also in the case of directed topologies, provided that the
graph is strongly connected, and in the case of switching
topologies, provided that in each instantaneous configuration
the graph is balanced and strongly connected (in the case
of directed topology) or simply connected (in the case of
undirected topology).

VII. E XPERIMENTAL RESULTS

The proposed distributed control approach has been ex-
perimentally tested on the multi-robot system composed by
five Khepera III robots in Fig. 1-(left), that are small size
(12 cm diameter) differential drive mobile robots. Each robot
is equipped with a Hokuyo URG-04LX-UG01 Laser Range
Finder (LRF) and adopts the software module developed
in [4] to perform localization in indoor environment based
on Extended Kalman Filter. Each robot is equipped with a
IEEE 802.11 wireless card and communicate with its neigh-
bors via a wireless ad-hoc network. The adjacency matrix is

assigneda priori and robots communicate according to it.
Namely, the static and undirected communication graph in
Fig. 1-(right) has been enforced.

1

2

3

4

5

Fig. 1. Left: picture of the five Khepera III robots used in theexperiment.
Right: the undirected communication topology of the experiment.

In the following experiment the team centroid is com-
manded to move along a desired U-shape path with initial
and final positions[1.4, 1.4]m and[2.0, 1.4]m and an over-
all length of 5.2 m; the velocity of the centroid follows
a trapezoidal profile with cruise speed of0.22m/s. The
assigned robot formation is a static circular formation, and
the parametersko, k1,c andk2,c in (11), (18) and (19) have
been set, respectively, to0.6, 0.5 and0.5.

A low-level motion controller is in charge of generating
the angular and the linear velocity of the robots to track the
assigned linear velocity commands output by equation (17);
moreover, a reactive collision avoidance technique integrated
in the control and activated when the relative distance among
the robots is lower than a certain threshold.
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Fig. 2. Plot of the estimated position of the team (k
x̂, k = 1, . . . , 5)

computed by the vehicles. Subplot (i, j) shows the time history ofkx̂j ,
k = 1, . . . , 5 together with the true valuexi (the black dashed line). It is
assumed thatxi = [xi, yi]

T.

Fig. 2 shows the position components of the overall team
as estimated by the different robots. It is worth noticing
that, after an initial transient, all the estimates converges to
the true values. Fig. 3-(left) shows the desired centroid of
the team together with the desired formation at three time
instants. In Fig. 3-(right) the dotted lines show the real paths
of the robots (xi) while the solid lines represent the paths of
all the robots as estimated by one of them (ix̂). The vectors
ix̂(t0)|t0=0 (i = 1, . . . , 5) in (11) are set to zero, where



t0 is initial time instant. Finally, Fig. 4 shows the errors of
the task functionσ̃1 and σ̃2. The multimedia attachment
accompanying the paper shows one experiment execution.
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Fig. 3. Left. Desired behavior. Right. Paths of the robots measured (dotted
lines) and as estimated by robot0 (solid line).
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VIII. C ONCLUSIONS

In this paper, a decentralized controller-observer approach
for formation control of multi-agent systems is proposed.
Each agent estimates the collective state of the system by
using only local information, and the estimated state is used
to cooperatively track a global task, defined in terms of
system’s centroid and geometrical formation. Convergence
of the closed-loop system has been proven via a Lyapunov
approach, while the validation is supported by experimental
results with a distributed multi-robot system.
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APPENDIX

The pseudoinverses ofJ1 andJ2 are

J
†
1 = 1N ⊗ In, J

†
2 =












J
†
2,1
...

J
†
2,i
...

J
†
2,N












, (34)

where

J
†
2,1=

[

− (N − 1)

N
In − (N − 2)

N
In . . . − 1

N
In

]

, (35)

J
†
2,N =

[

1

N
In

2

N
In . . .

(N − 1)

N
In

]

, (36)

and, fori = 2, . . . , N − 1

J
†
2,i=

[
1

N
In . . .

i− 1

N
In −N − i

N
In . . .− 1

N
In

]

. (37)


