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Abstract— In this paper the flocking problem for a multi-
robot system, consisting in making the robots of a team group-
ing together, is addressed. The flocking is achieved resorting to
the Null-Space-based Behavioral (NSB) control by defining very
simple behaviors for each robot of the team and by properly
arranging these behaviors in priority. The NSB algorithm,
making the robots using only local information, successfully
achieves the flocking with or without a rendez-vous point and
in eventual presence of obstacles. Extensive simulations and
experiments using differential-drive mobile robots prove the
effectiveness of the proposed algorithm.

I. INTRODUCTION

In nature several biological species exist that exhibit a

collective behavior implementing local interacting strategies.

Examples are given by birds, ants, bees and human crowd.

Among the different collective behavior, flocking is an in-

teresting emergent attitude that fascinated researchers from

several disciplines apparently far one each other: physicists,

social scientist, animal psychologists, etc. The flocking prob-

lem is also an interesting control problem [16] involving

the coordination of multiple agents characterized by limited

sensing and communication capabilities. Flocking is strictly

related to the study of self-organized networks of mobile

agents and it is a specific case study of the coordination

control of multiple robots that includes distribute sensing,

exploration, coverage, search and rescue, etc. The work

in [11] provides a significant overview about this control

problem.

In 1986 Reynolds [22] published a seminal work in

which a computer model for coordinating the motion of

animals as bird flocks or fish schools were presented. A

wide literature now exists that reports interesting results

concerning the flocking problem; in [18] different solutions

are investigated and their stability analysis in discussed.

Based on local sensing, each agent moves according to three

different terms, a gradient-based term, a consensus term

and a navigational feedback term that represent different

behaviors of each agent. The work [15] surveys recent

development in modelling, analysis and design of distributed

motion coordination algorithms for multiple robots systems.

An aspect that strongly influences the coordination strategy is

the eventual possibility for one agent to explicitly exchange
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information with its neighbors, this possibility poses the

challenge problem of consensus; an overview of the informa-

tion consensus is given in [21]. The work [19] investigates

consensus algorithms with emphasis on robustness, time-

delays and performance guarantee. In [24], the proposed

decentralized controller is stable under arbitrary changes in

the connected network.

Autonomous robotics has been strongly influenced by the

so-called robotics paradigm of behavior-based control [7],

[10] that can be described by the relationship between the

3 primitives of robotics: Sense, Plan, and Act. The behavior-

based paradigm represented one of the most investigated

approaches to the design of multi-robot systems. In this

paper, the flocking problem is solved resorting to the behav-

ioral approach defined NSB (Null-Space-based Behavioral

control) [5]. This approach, strongly related to the kinematic

control presented in [6], has been recently experimentally

applied in a large number of multi-robot missions such as

formation control or escort/entrap an autonomous target [3].

Most of the previously proposed missions were performed

resorting to a centralized control architecture. In this paper,

the first application of the NSB acting in a decentralized

scenario are presented. To elaborate its motion directives,

each robot applies the NSB control only referring to its local

information, i.e., its position, the rendez-vous point and its

instantaneous neighbors (the robots in its interaction range)

positions. Extensive simulations, assuming non-holonomic

agents, and experiments using a platoon of 7 differential-

drive mobile robots, namely the Khepera II, prove the

effectiveness of the proposed algorithm.

II. THE FLOCKING PROBLEM

The flocking problem has been approached by several

researchers of different disciplines, for this reason the word

flocking itself assumes slightly different meanings. We re-

fer to it as the problem of making the robots of a team

reaching particular configuration structures, namely lattice

configurations, only using local information. In particular,

the robots can sense their neighbors or exchange with them

their positions’ information (there is no need to exchange

or measure the neighbors’ velocities as in [18]), and they

elaborate their motion directives on the basis of these only

information. The flocking behavior, thus, emerges as the

results of local behaviors of the individual robots acting

simultaneously.

The local interaction among the robots can be analyzed

in the framework of communication/sensing networks that

depend on the displacement of the robots in the environment,



and, in particular, on the robots relative distances and their

sensing capabilities. To formally take into consideration these

aspects in the paper, the basic notions on graph theory are

briefly recalled in the following.

Inheriting the nomenclature from [18], a graph G is a pair

(V, E) that consists in a set of vertexes V = {1, 2, . . . , n}
and edges E ⊆ {(i, j) : i, j ∈ V, j 6= i}. In this paper,

an undirected graph will be considered, i.e., (i, j) ∈ E ⇒
(j, i) ∈ E . The scalar quantities |V| and |E| will be denoted as

order and size of the graph, respectively. The adjacent matrix

A collects the information concerning the edges such that

ai,j 6= 0 ⇔ (i, j) ∈ E ; for undirected graph it is A = AT.

The set of neighbors of node i is defined as

Ni = {j ∈ V : ai,j 6= 0} = {j ∈ V : (i, j) ∈ E}

The position of each node is denoted as pi ∈ IRl, where

l = 2 in case of a material point moving on a surface, or

l = 3 in the case of a material point moving in the space.

The configuration of all the nodes of the graph is defined as

the vector p ∈ IRln defined as

p = [pT

1
pT

2
. . . pT

n ]
T

.

A framework, or structure, is a pair (G,p) that consists in a

graph and the configuration of its nodes.

A group of dynamic node/robots has equation of motion

vi = ui ∀i ∈ V,

where vi ∈ IRl is the velocity of each node. In alternative,

second order kinematic equations can be used as in [18].

If one further defines an interaction range r between two

robots, it is possible to compute the neighbors of each robot

as

Ni = {j ∈ V :
∥∥pi − pj

∥∥ < r}

where ‖·‖ represents the Euclidean norm.

One possible model to represent the spatial order of flocks

is achieved by defining a geometric structure. Among the

possible choices one is given by the α-Lattice structures

obtained by all the configurations that satisfy:
∥∥pi − pj

∥∥ = d ∀j ∈ Ni(p) (1)

where d is the lattice’s scale and κ = r/d is the lattice’s

ratio. Obviously, an α-Lattice is characterized by edges of

the same length.

Configurations close the the α-Lattice are the quasi-α-

Lattice that introduces a tolerance in the definition of eq. (1):

−δ ≤
∥∥pi − pj

∥∥ − d ≤ δ ∀(i, j) ∈ E(p), (2)

an example of such a structure is shown in Figure 1, obtained

resorting to the algorithm presented in this paper.

A sort of metrics that measures the distance of a quasi-

α-Lattice to a α-Lattice is given by an index defined as

deviation energy:

E(p) =
1

|E(p)| + 1

n∑

i=1

∑

j∈Ni

(∥∥pi − pj

∥∥ − d
)2

(3)
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Fig. 1. Example of quasi-α-Lattice for 50 robots obtained with the
algorithm presented in this paper in a 2-dimensional version.

It is worth noticing that the zero is the global minimum of

such an index and is achieved for α-Lattice geometries.

In this paper, the flocking problem will be solved as

finding a control law ui(Ni), function of the only neighbors’

positions, in order to achieve a quasi-α-Lattice structure.

III. THE NSB CONTROL FOR MULTI-ROBOT SYSTEMS

In a general robot mission the accomplishment of several

tasks at the same time is of interest. A possible technique

to handle the tasks’ composition has been proposed by [8]

and [9], which consists of assigning a relative priority to the

single task functions by resorting to the task-priority inverse

kinematics introduced by [13] and [17] for ground-fixed

redundant manipulators. Nevertheless, as discussed by [12],

just in the case of conflicting tasks it is necessary to devise

singularity-robust algorithms that ensure proper functioning

of the inverse velocity mapping. Based on these works, this

idea is developed by [6] in the framework of the singularity-

robust task-priority inverse kinematics originally presented

by [12]. This control approach, namely the Null-Space-based

Behavioral control, has been then analyzed in the framework

of behavior-based approaches for the control of a single

autonomous vehicle in [5] and of multi-robot systems in [4].

In this paper, the flocking behavior emerges by applying

decentralized NSB controllers on board of each robot of

the team. In particular, since the robots only use local

information, the NSB will be presented for the individual

control of a single autonomous robots as in [5].

By defining as σ ∈ IRm the generic task variable to be

controlled by the i-robot, it is:

σ = f(pi,pj) (4)

where pi ∈ IRl is the i-robot configuration and pj ∈Ni are

the configurations of its neighboring robots.

Considering the neighboring robots as static objects (vj =
0), then, the corresponding differential relationship is:

σ̇ =
∂f(pi)

∂pi

vi = J(pi)vi , (5)

where J ∈ IRm×l is the configuration-dependent task Jaco-

bian matrix and vi∈ IRl is the robot velocity.



An effective way to generate motion references for the

vehicles starting from desired values σd(t) of the task

function is to act at the differential level by inverting the

(locally linear) mapping (5); in fact, this problem has been

widely studied in robotics (see, e.g., [23] for a tutorial).

A typical requirement is to pursue minimum-norm velocity,

leading to the least-squares solution:

ui = J†σ̇d = JT

(
JJT

)−1

σ̇d . (6)

However, discrete-time integration of the vehicle’s ref-

erence velocity would result in a numerical drift of the

reconstructed vehicle’s position; the drift can be counteracted

by a so-called Closed Loop Inverse Kinematics (CLIK)

version of the algorithm, namely,

ui = J†
(
σ̇d + Λσ̃

)
, (7)

where Λ is a suitable constant positive-definite matrix of

gains and σ̃ is the task error defined as σ̃=σd−σ. Thus, the

Null-Space-based Behavioral control intrinsically requires a

differentiable analytic expression of the tasks defined, so that

it is possible to compute the required Jacobians.

In the general case, the mission for the single i-robot

is composed by multiple tasks, thus, the motion directive

should be elaborated by properly merging the motion direc-

tives elaborated for all the single active tasks. In detail, on

the analogy of eq. (7), the single task velocity is computed

as:

uk = J
†
k

(
σ̇k,d + Λkσ̃k

)
, (8)

where the subscript k denotes the k-th task. Let us further

define as

Nk =
(
I − J

†
kJk

)

the null space projector of the task k. If the subscript k also

denotes the degree of priority of the task with, e.g., Task 1

being the highest-priority one, in the case of 3 tasks and

according to [12] or [14], then, the CLIK solution (7) is

modified into

ui = u1 + N1u2 + N12u3 (9)

where N12 is the null space projector obtained by stacking

the Jacobians corresponding to the tasks 1 and 2. Extension

to a desired number of tasks is straightforward.

As reported in [5], the NSB approach has been formulated

as a knew kind of behavior-based approach that differs from

the other techniques in the behavioral coordinations, that is,

in the way they compose the single task outputs to build

the motion command to the robots. The Null-Space-based

Behavioral control, in fact, uses a priority based logic to

combine multiple tasks and uses null-space projector to

delete the outputs of the lower priority tasks that would

conflict with the higher tasks. Thus, the Null-Space-based

Behavioral control always fulfills the highest-priority task.

The lower-priority tasks, on the other hand, are fulfilled only

in a subspace where they do not conflict with the ones having

higher priority.

Concerning the flocking problem, the NSB control ap-

proach differs from the other control approaches proposed

in literature in the way the single elementary tasks are

managed and combined. E.g., in the paper by [18] the

single elementary task are combined following a potential

approach and, from a behavior-based control point of view,

implementing a sort of cooperative control strategy, that is,

the outputs of the single task functions are combined as a

weighted sum to elaborate the final motion reference to the

robot.

IV. FLOCKING VIA THE NSB APPROACH

In this paper, the flocking problem described in Section II

is solved by defining several local task functions and by

applying the NSB control strategy on board of each robot.

Moreover, local supervisors are in charge of dynamically

selecting the active tasks and their priority orders to properly

perform the individual missions.

In the following, the definitions of the task functions and

the detail on the supervisor are presented.

A. Tasks’ definition

Only two tasks are sufficient to generate the flocking

behavior to the group of robots in presence of a rendez-vous

point. An additional task is required in case of the presence

of obstacles. Each of the functions is defined for each robot

and relies on the neighbors’ information, only:

Lattice task. This task function σl,ij ∈ IR is aimed at

keeping a constant distance (the lattice’s scale) between

two robots whose distance is smaller than the interaction

range:

σl,ij =
∥∥pi − pj

∥∥ with σl,ij,d = d

Its Jacobian J l,ij ∈ IR1×3 and Null N l,ij ∈ IR3×3

matrices are defined as

J l,ij = p̂
T

ij

N l,ij = I − p̂ij p̂
T

ij

where

p̂ij =
pi − pj∥∥pi − pj

∥∥

Moving to rendez-vous task. The task function σr,i ∈
IR3 is aimed at creating a connected graph. Its definition

is simply given by the robot position

σr,i = pi with σr,i,d = prv

where prv ∈ IR3 is the rendez-vous point. The (3 ×
3) Jacobian is simply the Identity matrix and the Null

space projector is the (3 × 3) null matrix. It is worth

noticing that it is useless to add tasks of lower priority

with respect to this one.

Obstacle avoidance task. Obstacle avoidance for au-

tonomous robots is a mandatory task and, resorting

to the NSB approach, has been deeply discussed in

previous papers such as, e.g., [6], [5]. Not surprisingly,



the obstacle avoidance task function is formally equal

to the lattice task:

σo,i = ‖pi − po‖ with σo,i,d = do

and



Jo,i = p̂
T

io

No,i = I − p̂iop̂
T

io

with p̂io =
pi − po

‖pi − po‖

where po is the position of the obstacle.

It is worth noticing that the task functions represent a sort

of elementary behaviors for each robot. In this sense, a task

function can be used several times if needed. As an example,

an agent can implement the lattice task with respect to several

different agents laying in its interaction range. More insights

on the number and kind of tasks to be used is given in next

Subsection.

B. Supervisor

The supervisor is a higher level function that, for each

robot, is in charge of selecting the priority of the active tasks.

According to the Degree of Freedoms (DOFs) considerations

given, e.g., by [5], it is convenient to properly take into

account the dimension of each task and to avoid requiring the

fulfillment of an overall dimension larger than the available

DOFs.

Each of the robot is aware only of the other robots inside

its interaction area, among them, a list containing robots ∈
Ni sorted by their distance with respect to i is considered

being ki(1) the closest.

By referring to a 3-dimensional case, each robot computes

the desired velocities corresponding to

• Lattice task with respect to the robot ki(1) (if at least

one robot ∈ Ni);

• Lattice task with respect to the robot ki(2) (if at least

two robots ∈ Ni);

• Lattice task with respect to the robot ki(3) (if at least

three robots ∈ Ni);

• Moving to rendez-vous task (if present in the mission

specification);

• Obstacle avoidance task (if po ∈ Ni)

that need to be properly arranged in a priority. A trivial

situation arises when the flocking is required without a

rendez-vous point and the set Ni is empty, in such a case

the robot obviously stays still.

Let us first consider the case of the absence of obstacles in

the set Ni, in this case the supervisor computes the Lattice

tasks assigning the higher priority to the closest robot. Since

the Lattice task is monodimensional, if at least three robots

belong to Ni the moving-to-rendez-vous task is discarded;

otherwise, it is added as the lowest in priority. It is worth

noticing that, even if more than three robots belong to Ni,

for the presented approach it is sufficient to consider only

the closest three and not all of them as proposed by [18].

Let us now consider one obstacle in the interaction range

of the robot, the supervisor firstly computes the desired

velocity without the obstacle, it then checks if the robot

Fig. 2. Sketch of the multi-robot set-up available at the LAI (Laboratorio
di Automazione Industriale) of the Università degli Studi di Cassino.

would approach the obstacle or go away from it. In the

latter situation nothing is changed with respect to the non-

obstacle case. If, on the other side, the robot would approach

the obstacle, then, the obstacle-avoidance task is selected as

primary task, all the tasks are correspondingly lowered in

priority and the last one is eventually removed if the sum of

the tasks’ dimension is larger than three.

For seek of clarity, let us imagine a situation where the

robot i has only one robot j inside the interaction range, its

supervisor would then consider:

priority task dimension

1 lattice between i and j 1

2 rendez-vous 3

if, on the other side, several robots and the obstacle are inside

the interaction range the supervisor would output:

priority task dim.

1 obstacle avoidance between i and po 1

2 lattice between i and ki(1) 1

3 lattice between i and ki(2) 1

Is is worth noticing that in [18], as well as in this paper,

each robot needs to know the position of other robots

present in a set Ni that is simply a sphere around it, this

is reasonable for robotic systems but not for biological flock

mainly characterized by directional sensing such as, e.g., the

eye-based vision. Future research might consider anisotropic

sets Ni and proper tasks that take it into account.

V. EXPERIMENTS AND SIMULATIONS

In the following, the experimental set-up (Subsection V-A)

and the results of the flocking execution (Subsection V-B)

are reported. Moreover, a video of one of the experiments

accompanies this paper, additional videos concerning other

simulations and experiments can be downloaded from the

laboratory website (address in the affiliation).

A. Experimental set-up

For these experiments, several Khepera II mobile robots

manufactured by K-team [1] available at the LAI (Labo-

ratorio di Automazione Industriale) of the Università degli

Studi di Cassino are used. Those are differential-drive mobile



Fig. 3. Snapshots of the initial and final configurations of an experiment where the robots flock around a fixed rendez-vous point.

robots (with a unicycle-like kinematics) with an approximate

dimension of 8 cm of diameter. Each of them can communi-

cate trough a Bluetooth module with a remote Linux-based

PC where the NSB has been implemented. To allow the

needed absolute position measurements we have developed

a vision-based system using two CCD cameras, a Matrox

Meteor-II frame grabber [2] and self-developed C++ image-

processing functions. The acquired images are 1024×768
RGB bitmaps. The measurement error has an upper bound

of ≈ 0.5 cm and ≈ 1 deg. The remote PC receives the

position measurements at a sampling time of 100 ms and

elaborates the NSB control for each of the robot, i.e., several

controllers, independent one each other, are implemented on

the remote PC; each of the controllers have access only to

the corresponding agent’s position and to the distances from

the neighbors. In this way a decentralized controller is imple-

mented by filtering the non accessible information for each

robot. Once the NSB outputs the desired linear velocities

for each robot, an heading controller is implemented [20] to

obtain the wheels’ desired velocities. The remote PC sends

to each vehicle (trough the Bluetooth module) the wheels’

desired velocities with a sampling time of T = 80 ms.

The wheels’ controller (on board of each robot) is a PID

developed by the manufacturer. A saturation of 40 cm/s and

100 deg/s has been introduced for the linear and angular

velocities, respectively. Moreover, the encoders resolution is

such that a quantization of ≈ 0.8 cm/s and ≈ 9 deg/s are

experienced.

B. Experimental and simulative results

All the following experiments were performed with a team

of 7 robots with the following parameters: lattice’s scale d =
25 cm, interaction range r = 30 cm, lattice’s ratio κ = r

d
=

1.2 , lattice task gain λl = 0.3 , rendez-vous task gain λr =

0.5 . Moreover, the initial agent configuration was always

casual.

Figures 3 reports two snapshots corresponding to the

initial and final configuration of an experiments run with 7

robots. Despite the presence of non-holonomicity, dynamics,

communication delays, etc. it can be noticed that the flocking

behavior is successfully achieved. Moreover, in the right

side snapshots of figure 3, the acquired data are graphically

elaborated to better appreciate the robots’ connections. In

particular, the yellow cone represent the position of the

rendez-vous point and the lines correspond to edges. This

experiment is also shown in the accompanying video.

In order to appreciate the algorithm performance with

multi-robot systems, extensive simulations have been run

considering a wide range of possible situations, pres-

ence/absence of the (eventually moving) rendez-vous

point, presence/absence of the obstacle, 2-dimensional/3-

dimensional motion, (non)holonomic vehicles, increasing

number of agents, etc. Due to the limited space, it is not

possible to report all the simulation results, only some

numerical results with 30 non-holonomic agents running at

100 ms are reported. Notice that the simulations run with

the same code as the experiment, this allows to debug the

experimental code. Figure 4 reports the initial and final

configurations for one sample of the simulations run. It can

be noticed that the algorithm’s performance is invariant with

the number of agents; being totally decentralized, moreover,

the computational complexity for each agent does not change

with the group dimension while the overall computational

complexity is obviously proportional to the number of agents.

Finally, it has been observed that the agents reach a steady-

state after a transient that is related to the group size due to

the dynamic interaction among the agents themselves.

As a conclusive plot, figure 5 reports the final configu-



Fig. 4. Graphical representation of the initial and final configurations for a numerical simulation with 30 non-holonomic agents.

Fig. 5. Final configuration for a second experiment; the left frame shows
a snapshot while the right frame the corresponding graphical elaboration.

ration for an additional experiment; the left frame shows a

snapshot while the right frame the corresponding graphical

elaboration.

VI. CONCLUSIONS

In recent years, the Null-Space-based Behavioral control ap-

proach has been applied for a wide range of robotic systems.

In case of a multi-agent systems, e.g., problems such as

formation control, escorting a target, or reconfiguration as a

mobile ad-hoc network, have been successfully achieved. In

this paper, the flocking problem of a group of dynamic agents

has been addressed and solved with the NSB framework by

defining very simple task functions. Flock in presence of a

common rendez-vous point and/or in presence of obstacles

has been discussed and verified by experiments performed

with a team of 7 Khepera II mobile robots.
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