Computational Modelling of Objects Represented in Images: Fundamentals, Methods and Applications III

Editors
Paolo Di Giamberardino & Daniela Iacoviello
Sapienza University of Rome, Rome, Italy

R.M. Natal Jorge & João Manuel R.S. Tavares
Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
Thematic sessions

Under the auspicious of CompIMAGE 2012, the following Thematic Sessions were organized:

Functional and structural MRI brain image analysis and processing
Organizers: Elisabetta Binaghi and Valentina Pedoia, Università dell’insubria Varese, Italy

Materials mechanical behavior and image analysis
Organizer: Italian Group of Fracture – IGF
Vittorio Di Cocco and Francesco Iacoviello, Università di Cassino, Italy

Images for analysis of architectural and urban heritages
Organizer: Michela Cigola, Università di Cassino, Italy

Standard format image analysis and processing for patients diagnostics and surgical planning
Organizer: Mauro Grigioni, Department of Technology and Health–ISS, Italy
Scientific committee

All works submitted to CompIMAGE 2012 were evaluated by the International Scientific Committee composed by experts from Institutions of more than 20 countries all over the World.

The Organizing Committee wishes to thank the Scientific Committee whose qualification has contributed to ensure a high level of the Symposium and to its success.

Lyuba Alboul
Enrique Alegre
Luís Amaral
Christoph Aubrecht
Jose M. García Aznar
Simone Balocco
Jorge M. G. Barbosa
Reneta Barneva
Maria A. M. Barrutia
George Bebis
Roberto Bellotti
Bhargab B. Bhattacharya
Manuele Bicego
Elisabetta Binaghi
Nguyen D. Binh
Valentin Brimkov
Lorenzo Bruzzone
Begoña Calvo
Marcello Castellano
M. Emre Celebi
Michela Cigola
Laurent Cohen
Stefania Colonnesi
Christos Costantinou
Miguel V. Correia
Durval C. Costa
Alexandre Cunha
Jéréme Darbon
Amr Abdel-Dayem
J. C. De Munck
Alberto De Santis
Vittorio Di Cocco
Paolo Di Giamberardino
Jorge Dias
Ahmed El-Rafei
José A. M. Ferreira
Mario Figueiredo
Paulo Flores
Irene Fonseca
Mario M. Freire
Irene M. Gatsba
Antionios Gasteratos
Carlo Gatta
Sidharta Gautama
Ivan Gerace
J.F. Silva Gomes
Jordi Gonzalez

Sheffield Hallam University, UK
Universidad de Leon, Spain
Polytechnic Institute of Coimbra, Portugal
AIT Austrian Institute of Technology, Austria
University of Zaragoza, Spain
Universitat de Barcelona, Spain
University of Porto/University of Porto, Portugal
State University of New York, USA
University of Navarra, Spain
University of Nevada, USA
Istituto Nazionale di Fisica Nucleare, Italy
Advanced Computing & Microelectronics Unit, India
University of Verona, Italy
Università dell' Insubria Varese, Italy
Hue University, Vietnam
Buffalo State College, State University of New York, USA
University of Trento, Italy
Universidad de Zaragoza, Spain
Politecnico di Bari, Italy
Louisiana State University in Shreveport, USA
University of Cassino, Italy
Université Paris Dauphine, France
Sapienza University of Rome, Italy
Stanford University, USA
Department of Physics and Medical Technology, The Netherlands
Sapienza University of Rome, Italy
University of Cassino, Italy
Sapienza University of Rome, Italy
University of Coimbra, Portugal
Friedrich-Alexander University Erlangen-Nuremberg, Germany
University of Coimbra, Portugal
Instituto Superior Técnico, Portugal
University of Minho, Portugal
Carnegie Mellon University, USA
University of Beira Interior, Portugal
University of Texas, USA
Democritus University of Thrace, Greece
Universitat de Barcelona, Spain
Ghent University, Belgium
Istituto di Scienza e Tecnologie, Italy
University of Porto, Portugal
Universitat Autonoma de Barcelona, Spain
Cosmatesque pavement of Montecassino Abbey.
History through geometric analysis

Michela Cigola
DART – Laboratory of Documentation, Analysis, Survey of Architecture and Territory
Department of Civil and Mechanical Engineering, Università di Cassino, Italy

ABSTRACT: The aim of this article is to show how images of various kinds, including photographs, surveying drawings, graphic rendering and all types of representation can support the analysis, study and documentation of historical floor surfaces in general, and in particular that in the abbatial basilica of Montecassino and other churches in its territory, once known as the “Land of Saint Benedict”.

1 COSMATESQUE PAVEMENTS

The Cosmatesque school had its beginning in the early 12th century, and was chiefly active in Rome during the Romanesque period. The Cosmati (1) are a typical example of craftsmen whose artistic education and work were often hereditary, handed down in the family. Consequently, preferences for certain types of pattern or specific designs are characteristic of a particular group.

The Cosmati masters’ work featured square or rectangular decorated panels set off by ribbons of mosaic wrapped around porphyry disks. The mosaic sections were always interspersed with white marble bands, essential in lending rhythm to the decorative scheme.

The can be no doubt that the main characteristic of a Cosmatesque pavement is the central strip that leads from the church entrance directly to the apse (Fig. 1).

The simplest type of central strip consists of a series of porphyry roundels joined by interlacing bands of mosaic and contrasting white marble in a guilloche pattern. This type became increasingly complicated, with later examples showing a highly complex design. Another common pattern for the central strip is the quincunx (Fig. 2), or in other words a square containing a central roundel surrounded by four other roundels, all connected by ribbons of mosaic and bands of marble. These two types of central strip were often combined to form extremely complex patterns.

After the central decorative motif was established, the entire floor surface was covered with rectangles in geometrical patterns that were usually repeated symmetrically around the longitudinal axis of the central design, with more attention devoted to the general effect of the surface as a whole than to the panel itself (Fig. 3).

2 DATING COSMATESQUE WORK THROUGH GEOMETRIC ANALYSIS

The Cosmati are a typical example of craftsmen whose artistic education and work were often hereditary, handed down in the family. Consequently, preferences

Figure 1. Rome, Cosmatesque pavement in the Basilica of San Crisogono.

Figure 2. Castel Sant’Elia, Cosmatesque pavement of the basilica.
Plate IV. Decorative geometric patterns found in the pavements of Montecassino, San Vincenzo al Volturno and Sant’Elia Fiumberpido.

variations from those of the pavement of Montecassino (Plate IV).

4.2 The church of Santa Maria Maggiore in Sant’Elia Fiumberpido

The building, datable to the very end of the 12th century and restored after the war, is a rectangular hall church with the entrance on the long side.

The approximately 10 square meter section of pavement that is still visible (Fig. 8), postdating that in the abbey of Montecassino by around a century, is made up of rectangles of varying size arranged around the altar and bordered by white marble strips.

The distribution of the panels appears to have no direct relationship with the church’s floor plan and, unlike most pavements of this type, puts no particular emphasis on the central strip.

For the most part, the geometric layouts are based on arrays of squares, rectangles, triangles, rhombuses and octagons, with only one of the patterns featuring circular elements.

Of the eleven geometric patterns that can be identified in the floor surface, almost all are part of the Roman and Late Antique decorative repertory (Plate I), while four were to become part of the decorations commonly used by the Cosmati masters throughout the entire period of their activity (Plate II). Another four are completely unknown, appearing for the first and only time in this pavement, and are thus to be ascribed to a more “pre-Cosmatesque” repertory (Plate III). Others are found among the patterns used for the pavement in the abbey of Montecassino (Plate IV), while some belong to the decorative repertory associated with the oldest family of Roman marble workers, that of Magister Paulus.

With the evidence available to us, it is risky to attempt to attribute the Sant’Elia pavement to the family of Magister Paulus, though the hypothesis is a fascinating one. We can only emphasize that the period in which these craftsmen were active (1108–1170) matches that in which the Sant’Elia pavement was executed, and that the family was active both in Rome and in the rest of Lazio.

5 CONCLUSIONS

A Cosmatesque pavement’s period of construction and attribution can be identified with a good degree of approximation by analyzing its total surface and overall design, as well as the geometric layout of the individual panels of which pavements of this kind are made up.

A systematic study of the patterns typical of each family of craftsmen, in fact, is essential in an analysis of this kind, as each Cosmati family had certain particular patterns that would be included in the family’s pavements as its hallmark.

A study of this kind, based on a thorough investigation of the stylistic and geometric features through photographs and/or drawings, is an example of how image analysis can contribute effectively to an understanding of historical architecture.
REFERENCES

