

Modelli per l'analisi delle interconnessioni

L'analisi di Signal Integrity

Studio di due aspetti fondamentali in un sistema di trasmissione:

- Qualità del segnale ricevuto
- Timing

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Principali cause di deterioramento del segnale

Principali punti critici

Comportamento non ideale dei dispositivi Comportamento non ideale delle interconnessioni Accoppiamenti indesiderati con campi esterni Effetti parassiti legati alle discontinuità e alle terminazioni Comportamento non ideale del ground Separazione non perfetta tra parte analogica e digitale

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Il problema delle interconnessioni

	1997	2003	2006	2012
Chip size (mm2)	300	430	520	750
Number of transistors (million)	11	76	200	1400
Interconnect width (nm)	200	100	70	35
Total interconnect length(km)	2.16	2.84	5.14	24

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Richiami sulla propagazione guidata

SOL PER NOCTEN

S

Onde elettromagnetiche

le equazioni di Maxwell complete ammettono soluzioni viaggianti

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Onde elettromagnetiche

struttura fondamentale delle onde piane

H =
$$\frac{1}{\zeta} \hat{k} \times E$$

impedenza intrinseca: $\zeta = \sqrt{\frac{\mu}{\epsilon}}$
 $\zeta_0 = 377 \Omega$, $v_0 = c \approx 3 \cdot 10^8$ m/s

Propagazione guidata

la direzione di propagazione è imposta dall'asse longitudinale di una struttura guidante

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Propagazione guidata

altri esempi di strutture guidanti

Strutture guidanti: modi di propagazione

modi di propagazione: soluzioni particolari delle equazioni di Maxwell nelle strutture guidanti

MODO TEM (Trasverso Elettro-Magnetico)

modo fondamentale per strutture a connessione molteplice campo magnetico

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Strutture guidanti: modi di propagazione

supponiamo che il campo dipende solo da z e si propaghi lungo z:

Strutture guidanti: modi di propagazione

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Strutture guidanti: modi di propagazione

$$E_{y}(z,t) = E_{y}^{+}(t-z/v) + E_{y}^{-}(t+z/v)$$

$$H_{x}(z,t) = -\frac{1}{\xi} \left(E_{y}^{+}(t-z/v) - E_{y}^{-}(t+z/v) \right)$$
progressiva
regressiva
$$F(z,t) = F(z,t)^{T}$$

Modi di propagazione

A frequenza zero esiste solo il modo fondamentale

TEM = Trasverso elettromagnetico

Al crescere della frequenza vengono eccitati i modi superiori:

- **TE = Trasverso elettrico**
- TM = Trasverso magnetico
- SOL PER NOCTEM

Nelle condizioni di funzionamento normale si cerca di non eccitare modi superiori (potenza dissipata)

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Modellistica delle interconnessioni

SOL PER NOCTEN

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Modello a linea di trasmissione: linea singola ideale

 $\frac{\partial^2 v(z,t)}{\partial z^2} - LC \frac{\partial^2 v(z,t)}{\partial t^2} = 0 \quad \text{Eq.delle onde}$

 $v(z,t) = v^{+}(t - z/c) + v^{-}(t + z/c - T)$

 $Z_0 i(z,t) = v^+ (t - z/c) - v^- (t + z/c - T)$

$\frac{\partial v(z,t)}{\partial t} =$	$-L\frac{\partial i(z,t)}{\partial z}$
∂z	∂t
$\frac{\partial i(z,t)}{\partial z}$	$-C\frac{\partial v(z,t)}{\partial v(z,t)}$
∂z –	∂t

L = induttanza per unità di lunghezza C = capacità per unità di lunghezza $v = \frac{1}{\sqrt{Eu}} = \frac{1}{\sqrt{LC}}$ (mezzi omogenei)

impedenza caratteristica

$$Z_0 = \sqrt{\frac{L}{C}}$$

tempo di transito $T = l \sqrt{LC}$

Effetto delle linee di trasmissione: ritardo

Effetto delle linee di trasmissione: overshoots

disadattamento tra carichi ed impedenza caratteristica

$$R_L > Z_0$$

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Effetto delle linee di trasmissione: undershoots

disadattamento tra carichi ed impedenza caratteristica

$$R_L < Z_0$$

Parametri p.u.l. per strutture canoniche

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Modellistica delle linee di trasmissione

tecnica della segmentazione: linea singola ideale

Modelli equivalenti nel dominio della frequenza

Matrice delle impedenze

$$I_{1}(\omega) = Z_{11}(\omega)I_{1}(\omega) + Z_{12}(\omega)I_{2}(\omega)$$

$$V_{1}(\omega) = Z_{11}(\omega)I_{1}(\omega) + Z_{12}(\omega)I_{2}(\omega)$$

$$V_{2}(\omega) = Z_{21}(\omega)I_{1}(\omega) + Z_{22}(\omega)I_{2}(\omega)$$

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Modelli equivalenti nel dominio della frequenza

Matrice di trasmissione

 $I_{1}(\omega)$ $I_{2}(\omega)$ $\underline{I}_{2}(\omega)$ $\underline{I}_{$

La rappresentazione T è molto conveniente, in quanto consente di trattare agevolmente sistemi in cascata

Modelli equivalenti nel dominio della frequenza

Matrice di scattering $I_{1}(\omega)$ $I_{2}(\omega)$ $V_{1}(\omega)$ $I_{2}(\omega)$ $I_{2}(\omega)$ $V_{2}(\omega)$ $I_{1}(\omega) = A_{1}(\omega) + B_{1}(\omega)$ $V_{2}(\omega) = A_{2}(\omega) + B_{2}(\omega)$ $I_{1}(\omega) = A_{1}(\omega) - B_{1}(\omega)$ $I_{2}(\omega) = A_{2}(\omega) - B_{2}(\omega)$ $I_{1}(\omega) = \sqrt{Z_{0}}I_{1}(\omega), \quad I_{2}(\omega) = \sqrt{Z_{0}}I_{2}(\omega)$ $B_{1}(\omega) = S_{11}(\omega)A_{1}(\omega) + S_{12}(\omega)A_{2}(\omega)$ $B_{2}(\omega) = S_{21}(\omega)A_{1}(\omega) + S_{22}(\omega)A_{2}(\omega)$

La rappresentazione S si adatta bene alla caratterizzazione sperimentale dei componenti ad alta frequenza e al bilancio di potenza

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Modelli equivalenti nel dominio del tempo

modello open-loop (metodo delle caratteristiche): linea singola ideale

$$\begin{cases} v_1(t) - Z_0 i_1(t) = w_1(t) \\ v_2(t) - Z_0 i_2(t) = w_2(t) \\ \begin{cases} w_1(t) = v_2(t-T) + Z_0 i_2(t-T) \\ w_2(t) = v_1(t-T) + Z_0 i_1(t-T) \end{cases}$$

 w_1, w_2 sono nulli se la linea è *adattata:* $v_1(t) = -Z_0 i_1(t), v_2(t) = -Z_0 i_2(t)$

Il modello si presta in modo naturale ad una procedura di risoluzione ricorsiva (SPICE)

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

LINEA CON PERDITE: modello quasi-TEM

 $\frac{\partial v(z,t)}{\partial z} = -Ri(z,t) - L\frac{\partial i(z,t)}{\partial t}$ $\frac{\partial i(z,t)}{\partial z} = -Gv(z,t) - C\frac{\partial v(z,t)}{\partial t}$

Linee con perdite indipendenti da f R = resistenza per unità di lunghezza G = conduttanza per unità di lunghezza

$$\frac{dV(z,\omega)}{dz} = -Z(z,\omega)I(z,\omega)$$
$$\frac{dI(z,\omega)}{dz} = -Y(z,\omega)V(z,\omega)$$

Linee con perdite dipendenti da f e da z Z = impedenza per unità di lunghezza Y = ammettenza per unità di lunghezza

Effetto delle perdite: distorsione

Linea singola con perdite: equivalente nel dominio del tempo

modello open-loop: linea singola reale

RS

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Un problema di integrità di segnale:

effetto della modellazione delle interconnessioni digitali ad alta velocità

Interconnessione su package

problema- tipo: trasmissione del segnale di clock

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Confronto tra modelli: distribuito e concentrato

 λ confrontabile con la dimensione trasversa: occorre un modello full-wave!

Appendice:

derivazione del modello circuitale equivalente nel DT di una linea ideale

Soluzione in forma viaggiante

$$\frac{\partial v}{\partial x} = -L\frac{\partial i}{\partial t} \quad \frac{\partial i}{\partial x} = -C\frac{\partial v}{\partial t}$$

$$v(x,t) = v^{+}(t-x/c+\alpha^{+})+v^{-}(t+x/c+\alpha^{-})$$

$$i(x,t) = \frac{1}{R_{c}} \left[v^{+}(t-x/c+\alpha^{+})-v^{-}(t+x/c+\alpha^{-})\right]$$

$$c = \frac{1}{\sqrt{LC}} \quad \text{velocità di propagazione}$$

$$R_{c} = Z_{0} = \sqrt{L/C} \quad \text{impedenza caratteristica}$$

$$\alpha^{+} e \quad \alpha^{-} \text{ costanti arbitrarie}$$

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

 i_{1} i_{2} i_{2

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

$$\begin{array}{c}
\stackrel{i_{1}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} & \stackrel{i_{2}}$$

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

$$\begin{array}{c}
\stackrel{i_{1}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} \\
\stackrel{i_{1}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} \\
\stackrel{i_{1}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} \\
\stackrel{i_{1}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} \\
\stackrel{i_{1}}{\longrightarrow} & \stackrel{i_{2}}{\longrightarrow} & \stackrel{i_{2}}$$

 $v^{+}(t) e v^{-}(t) \text{ sono } \underline{\text{variabili di stato}} \text{ della linea,}$ infatti: $w_{em}(x,t) = \frac{1}{2}Li^{2} + \frac{1}{2}Cv^{2}$ $= C[v^{+}(t-x/c+T)]^{2} + C[v^{-}(t+x/c)]^{2}$

Risoluzione iterativa $iT \le t \le (i+1)T$ $w_1(t)$ dipende da $v_1(t-T) = v_2(t-T)$ $w_2(t)$ dipende da $w_1(t-T) = v_2(t-T)$ legge di controllo dei generatori pilotati: $w_1(t+T) = 2v_2(t) - w_2(t)$ $w_2(t+T) = 2v_1(t) - w_1(t)$ $v_2(t) = 0$ $v_2(t) = 0$ A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

A. Maffucci, Laboratorio di Compatibilità Elettromagnetica 2005-2006

MODELLI PER L'ANALISI DELLE INTERCONNESSIONI

Funzionamento a regime

Questo circuito non è adatto a descrivere condizioni di regime (sinusoidale, periodico, ...)