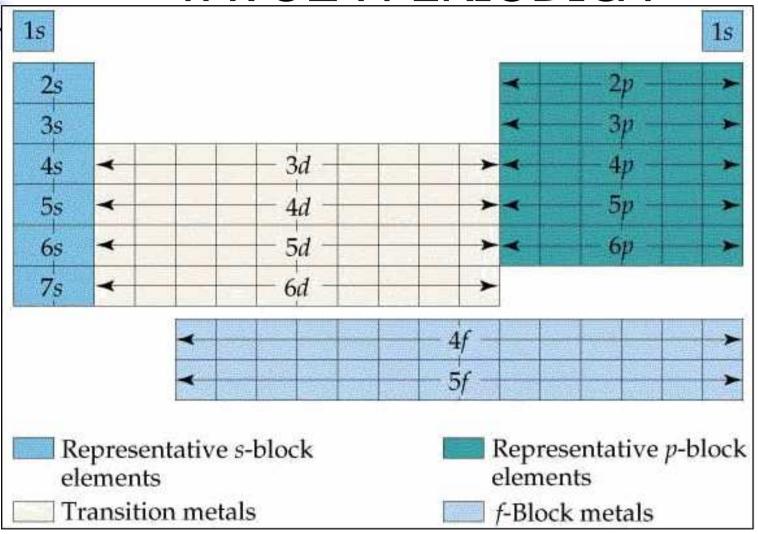

VERSITAGE CASE

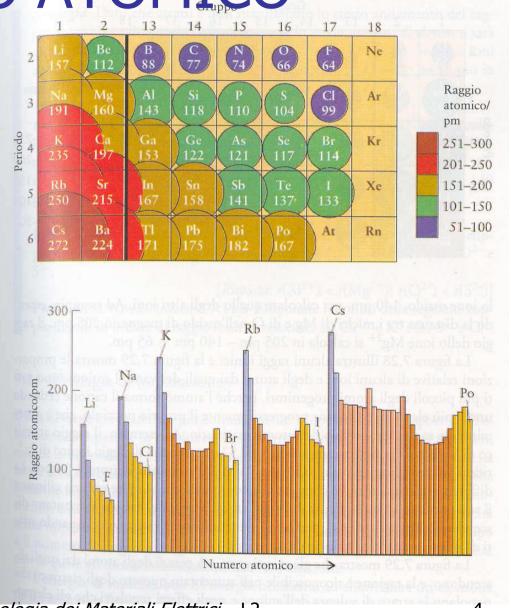
CARATTERISTICHE DEGLI ATOM


Isotopi: Z è lo stesso, A è diverso

Isotopi dell'O e loro abbondanza naturale

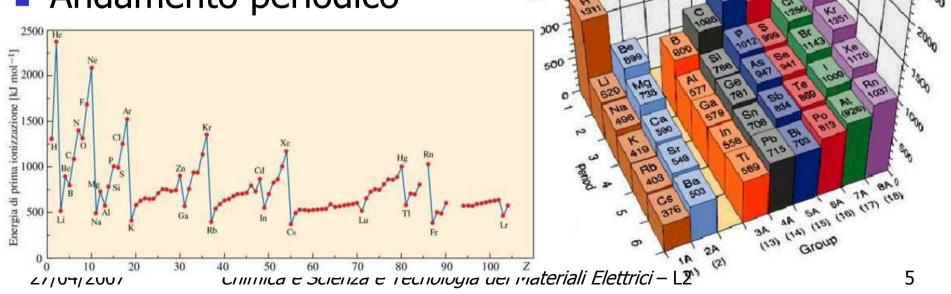
BLOCCHI DI ATOMI NELLA TAVOLA PERIODICA

PROPRIETA' PERIODICHE DEGLI ATOMI


- Raggio atomico
- Energia di ionizzazione
- Affinità elettronica

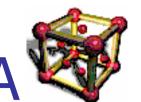
RAGGIO ATOMICO

 Andamento dei raggi atomici lungo la tavola periodica: aumento lungo un gruppo e diminuzione lungo un periodo


ENERGIA DI IONIZZAZION

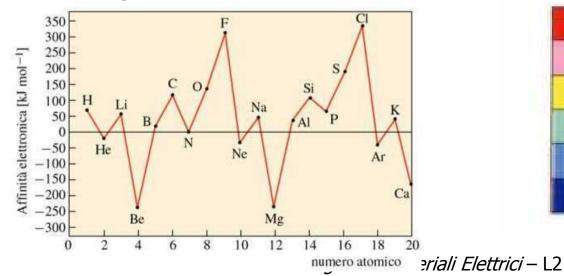
Energia connessa alla seguente reazione chimica:

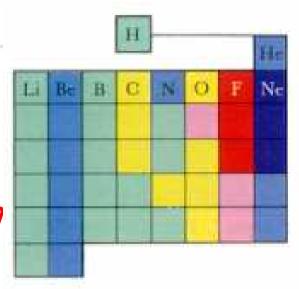
$$El(g) \rightarrow El^+(g) + e^-$$

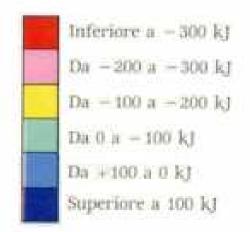

Reazione endotermica (richiede energia dall' esterno)

Andamento periodico

1500

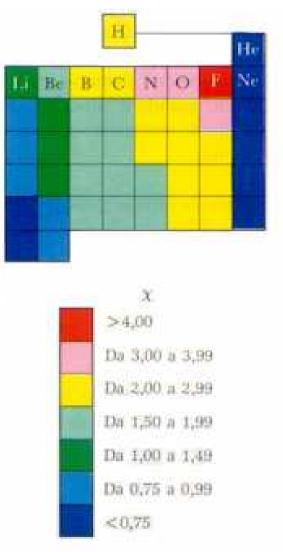





Energia connessa alla seguente reazione chimica:

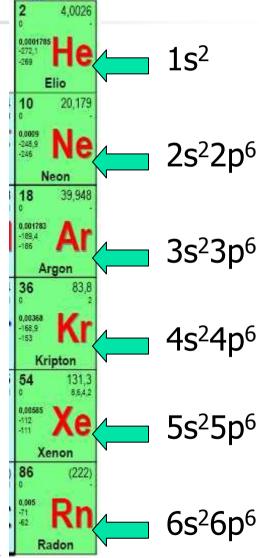
$$El(g) + e^- \rightarrow El^-(g)$$

- Reazione generalmente esotermica (rilascia energia verso l' esterno)
- Andamento periodico



ELETTRONEGATIVITÁ

- Parametro (χ) per misurare la capacità di un atomo ad attrarre elettroni.
- Dipende sia dall' affinità elettronica che dalla energia di ionizzazione.
- Maggiore elettronegatività ⇒ maggiore tendenza ad accettare elettroni.
- L' elettronegatività è il principale parametro che permette di prevedere come un atomo si lega ad altri atomi.


COMPORTAMENTO CHIMICO DEGLI ATOMI

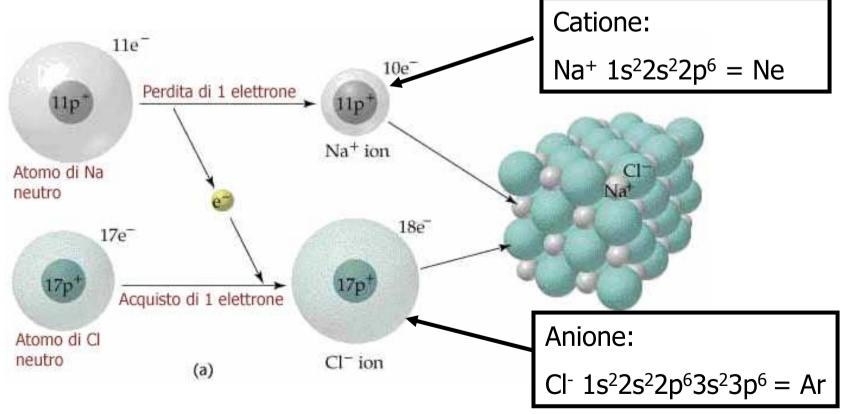
- Atomi isolati estremamente reattivi (eccezione dei gas nobili).
- Interazioni di natura elettrostatica tra gli atomi che si legano determinando la formazione delle sostanze chimiche.
- Elettroni di valenza (elettroni presenti sul guscio più esterno) coinvolti in tali processi ⇒ il comportamento chimico degli atomi è determinato dagli elettroni di valenza.

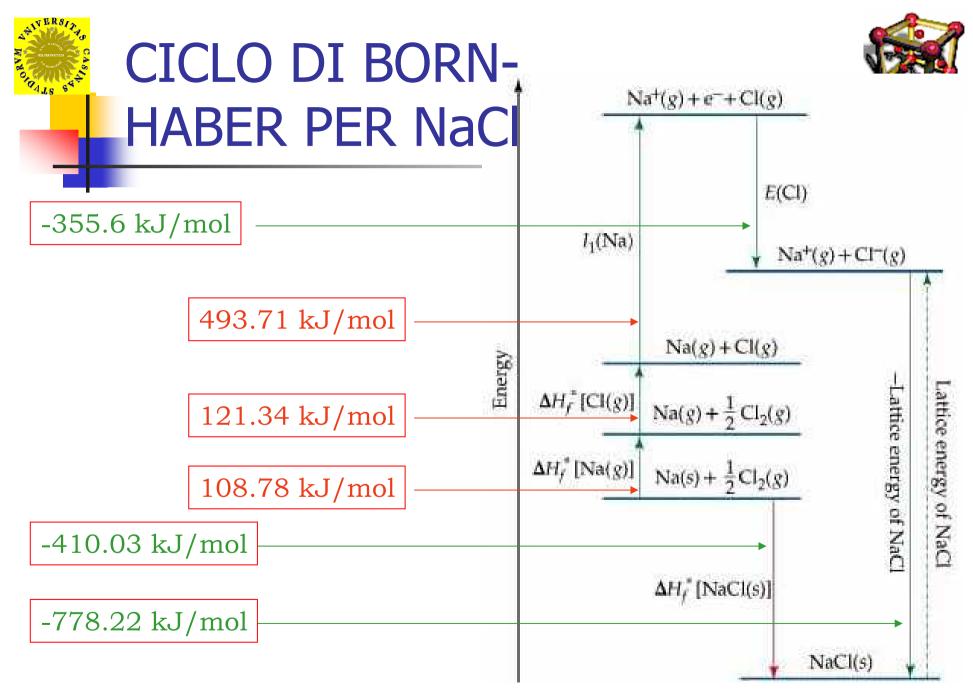
COMPORTAMENTO CHIMICO DEGLI ATOMI

- Gas nobili: scarsissima tendenza a reagire (livello esterno s²p⁶ ottetto completo).
- Altissima stabilità chimica in tale configurazione elettronica.
- Tendenza negli atomi a ricondursi a tale configurazione.
- Modalità con cui ciò avviene dipende dalla posizione nella tavola periodica.

LEGAME CHIMICO

- Legami primari (tra atomi):
 - Ionico (sale da cucina NaCl)
 - Covalente (zucchero C₁₂H₂₂O₁₁)
 - Metallico (rame Cu)
- Legami secondari (tra molecole):
 - Idrogeno (proprietà dell' acqua)
 - Forze di Van der Waals




- Atomi si trasformano in ioni, positivi (cationi) e negativi (anioni) cedendo e acquistando elettroni che si legano per attrazione coulombiana tra cariche opposte.
- La configurazione stabile s²p⁶ viene conseguita da tale perdita/acquisto di elettroni.
- Forma di legame prevalente tra atomi molto elettronegativi e atomi molto elettropositivi (esempio NaCl) $\Rightarrow \Delta(\chi)$ elevata.
- Nel processo di formazione del composto ionico sono coinvolte molteplici aliquote di energia (ciclo di Born-Haber).

Non si forma una coppia di ioni ma un solido ionico costituito da un numero grandissimo di cationi e anioni. In NaCl ogni catione è circondato da 6 anioni e viceversa.

- Na (s) + $\frac{1}{2}$ Cl₂ (g) \rightarrow NaCl(s) ΔH_f = entalpia di formazione del composto = -410 kJ/mol.
- È l'energia reticolare a rendere possibile la formazione del legame ionico

$$E_{potenziale,elettr} = M \frac{|z_1 z_2| N_A e^2}{4\pi \varepsilon_0 d}$$
 Costante di Madelung

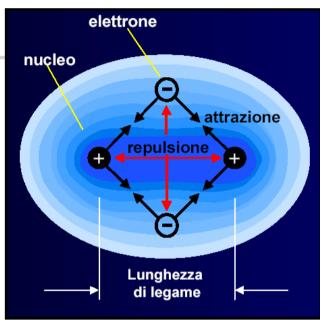
			colare (,		
ALO LiF	GENURI 1046	LiCl	861	LiBr	818	LiI	759
NaF	929	NaCl	787	NaBr	751	NaI	700
KF	826	KCl	717	KBr	689	KI	645
AgF	971	AgCl	916	AgBr	903	AgI	887
BeCl ₂	3017	$MgCl_2$	2524	CaCl ₂	2260	$SrCl_2$	2153
		MgF_2	2961	CaBr ₂	1984		
oss	IDI						
MgO	3850	CaO	3461	$Sr \bigcirc$	32B3	BaO	3114
201	EUD!						
SOL MgS	FURI 3406	CaS	3119	SrS	2974	BaS	2832

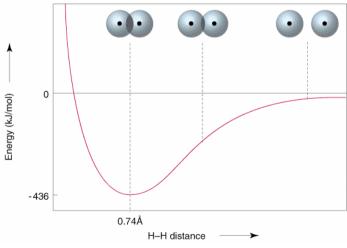

- Valenza multipla (blocco p e blocco d): Cu₂O e CuO
- Proprietà tipiche dei composti ionici:
 - Elevato punto di fusione
 - Elevatissimo punto di ebollizione
 - Fragilità
 - Solubilità in acqua

I solidi ionici sono fragili!!

ci - L2

LEGAME COVALENTE


- Configurazione stabile s²p⁶ raggiungibile non solo attraverso perdita/acquisto permanente di elettroni.
- Lewis (1916): condivisione degli elettroni di valenza fino a che il guscio di valenza contenga otto elettroni.
- Legame favorito quando $\Delta(\chi)$ è piccola e χ è elevata per i due atomi (blocco p).



LEGAME COVALENTE

- La condivisione di elettroni può legare gli atomi se gli atomi sono abbastanza vicini.
- Il legame covalente singolo è fatto da una coppia di elettroni condivisi (spin opposto).
- Sono possibili legami covalenti doppi o tripli (2 o 3 coppie di elettroni).

LEGAME COVALENTE

- Legame covalente: molecole
- Legame ionico: reticolo di ioni (una enorme macromolecola?).
- Strutture di Lewis per rappresentare gli atomi che formano la molecola e i legami covalenti tra i vari atomi.

STRUTTURE DI LEWIS

Scrivere la struttura di Lewis di CHCl₃

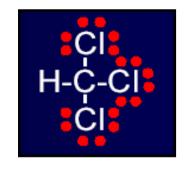
1° Passo: fissare l'atomo centrale (C) nell'esempio e posizionare intorno gli altri atomi.

CI H C CI CI

2° Passo: contare tutti gli elettroni di valenza degli atomi.

N = 7(C1)x3 + 4(C)x1 + 1(H)x1 = 26 elettroni totali

3° Passo: tracciare i legami covalenti singoli tra i vari atomi e determinare gli elettroni residui (26 – 8 = 18 *e*)



STRUTTURE DI LEWIS

Scrivere la struttura di Lewis di CHCl₃

4º Passo: posizionare gli elettroni residui (18) partendo da quelli esterni e completando gli ottetti.

Problema importante: come scegliere l'atomo centrale? Regola pratica: scegliere l'atomo con la minore energia di ionizzazione.