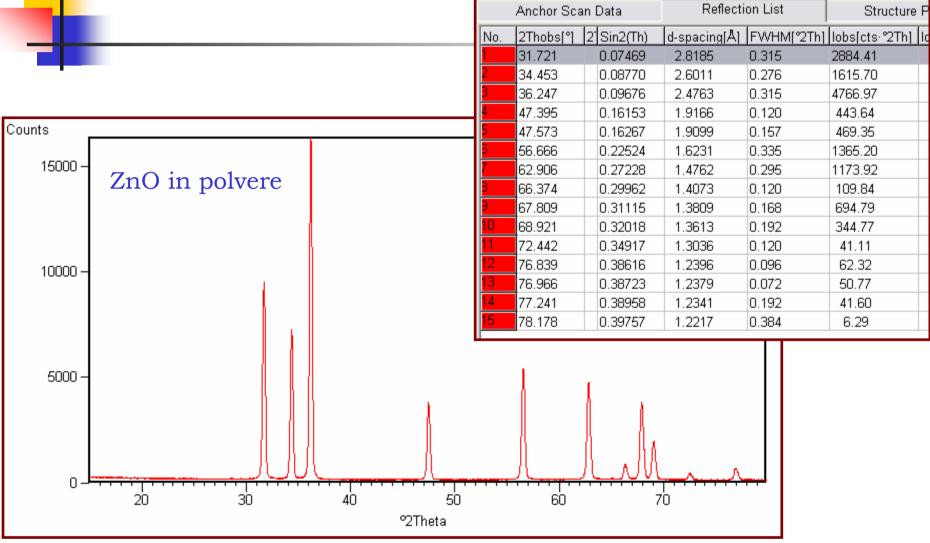
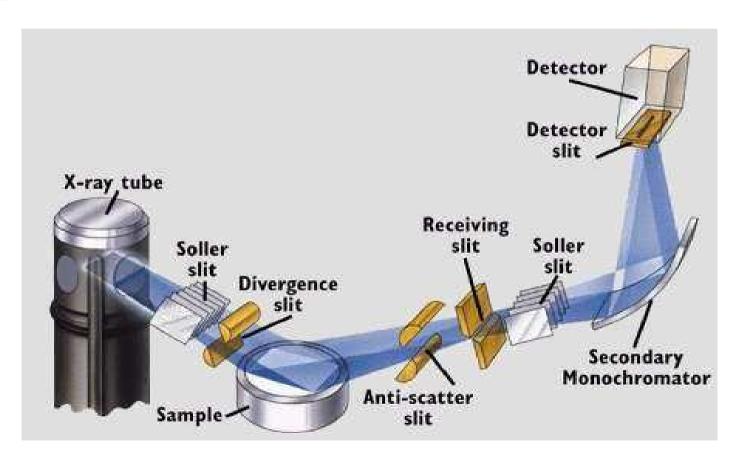


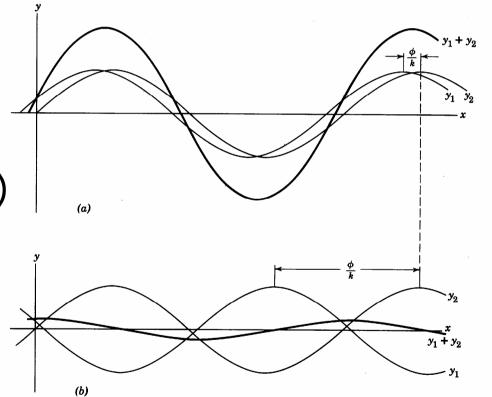
DIFFRAZIONE AI RAGGI X

- La periodicità delle strutture cristalline fu scoperta nel 1912 con interazione con raggi X di un cristallo di NaCl.
- La radiazione uscente dal solido per determinati angoli di incidenza è particolarmente intensa, mentre altrove è limitata ad un rumore di fondo.
- Interazione costruttiva ⇒ periodicità nella disposizione atomica.
- La distanza interatomica ≈ lunghezza d'onda della radiazione.


DIFFRAZIONE AI RAGGI X

- Il fenomeno della interazione costruttiva della radiazione uscente dal solido cristallino colpito da raggi X è detta DIFFRAZIONE.
- L'analisi oggi è condotta in apparecchiature a controllo elettronico dette DIFFRATTOMETRI.
- Il risultato dell'analisi diffrattometrica è un grafico detto spettro di diffrazione, con un listato contenente posizione angolare ed intensità dei picchi misurati.

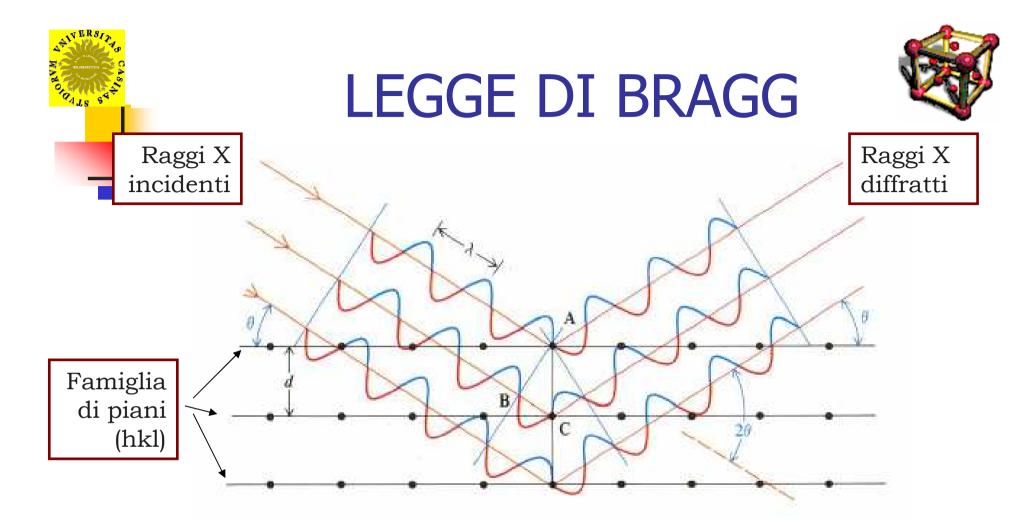

SPETTRO DI DIFFRAZIONE



SCHEMA DEL DIFFRATTOMETRO

INTERFERENZA DELLA RADIAZIONE ELETTROMAGNETICA

 Due onde che viaggiano insieme possono avere interferenza costruttiva (a) oppure distruttiva (b) in funzione della posizione relativa dei massimi e dei minimi.


DIFFRAZIONE

- La diffrazione è l' interferenza che subisce la radiazione elettromagnetica che diffonde da un oggetto posto sul cammino della radiazione.
- La diffrazione può essere descritta in più modi.
- Legge di Bragg.

DIFFRAZIONE SECONDO BRAGG

- Un reticolo cristallino è fatto da un accatastamento di piani reticolari;
- La diffrazione è assimilabile ad una semplice riflessione da parte dei piani reticolari;
- I raggi X riescono a penetrare anche dentro il reticolo, per cui ci sono raggi diffusi anche da piani reticolari interni.

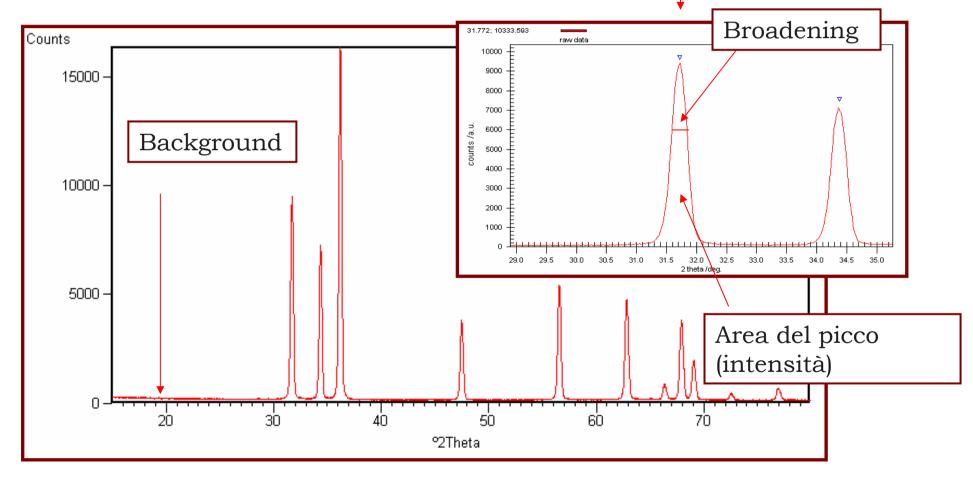
- Raggi diffratti in fase se Δ (cammino) è pari a λ o a n λ .
- $2BC = n\lambda$; $BC = d \cdot \sin \theta$.
- Legge di Bragg

$$n\lambda = 2d_{(hkl)}\sin\theta$$

UTILIZZO DELLA LEGGE DI BRAGG

- Legge di Bragg + formula della distanza interplanare:
 - Dai dati di diffrazione ai raggi X possibile la determinazione dei parametri di reticolo ed inoltre l'indicizzazione (assegnare ad ogni picco di diffrazione la terna (hkl) corrispondente).
 - Posizione angolare dei picchi ⇔ distanze interplanari.
 - Intensità dei picchi ⇔ posizione degli atomi nei piani.
- Operazione agevole per il sistema cubico.

SPETTRO DI DIFFRAZIONE


Caratteristiche salienti:

- Posizione angolare (2θ) dei picchi → dipende dalle distanze interatomiche;
- Intensità dei picchi (area del picco) → dipende dagli atomi presenti nella cella elementare e dalle loro posizioni;
- Broadening dei picchi → dipende dalla microstruttura e dalle imperfezioni del materiale;
- Rumore di fondo (background) → dipende dalle interazioni casuali della radiazione con l' aria, il diffrattometro, ecc.

SPETTRO DI DIFFRAZION

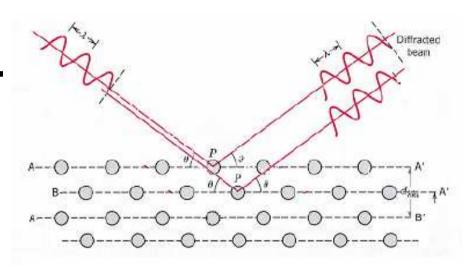
POSIZIONE ANGOLARE DEI PICCHI

Relazioni per il sistema

cubico

$$d_{(hkl)} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$n\lambda = 2d_{(hkl)} \sin \theta$$


$$n = 1$$

$$\sin \theta = \frac{\lambda \sqrt{h^2 + k^2 + l^2}}{2a}$$

INTENSITÀ DELLA DIFFRAZIONE

- Fenomeno delle estinzioni sistematiche.
- Esempio della diffrazione dai piani (100) nella struttura BCC.
- Piani A e piani B danno raggi diffratti in opposizione di fase.

ESTINZIONI SISTEMATICHI

- Cubico semplice: nessuna estinzione
- Cubico a corpo centrato: diffrazione presente solo per h + k + l = 2n
- Cubico a facce centrate: diffrazione presente solo per h, k, l tutti pari o tutti dispari (0 è pari)
- Esagonale compatto: estinzione per h + 2k = 3n e l dispari

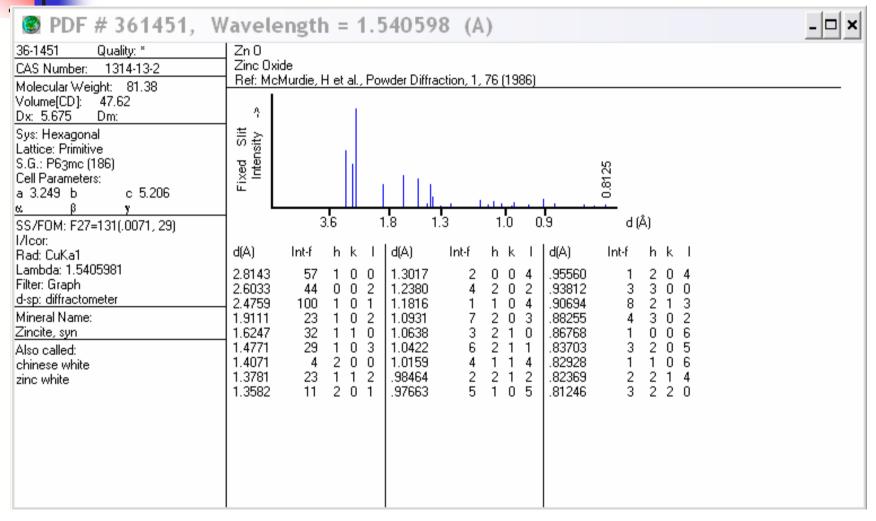
RISOLUZIONI DI STRUTTURE CUBICHE

{hkl}	\sum (h ² +k ² +l ²)	FCC	BCC
{100}	1		
{110}	2		SI
{111}	3	SI	
{200}	4	SI	SI
{210}	5		
{211}	6		SI
{220}	8	SI	SI
{221}	9		
{310}	10		SI

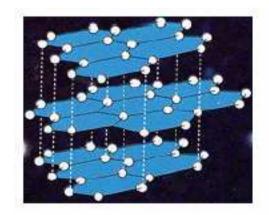
$$\frac{\sin^2 \theta_1}{\sin^2 \theta_2} = \frac{3}{4} = 0.75 \text{ (FCC)}$$

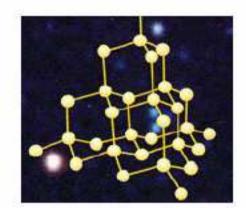
$$\frac{\sin^2 \theta_1}{\sin^2 \theta_2} = \frac{2}{4} = 0.50 \text{ (BCC)}$$

Se le condizioni precedenti non sono verificate, si può operare con un procedimento per tentativo.


DIFFRAZIONE SU POLVER

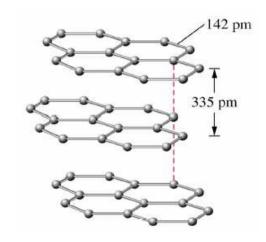
- Analisi qualitative:
 - Identificazione delle fasi;
- Analisi quantitative:
 - Determinazioni dei parametri di reticolo;
 - Determinazione della composizione di sistemi plurifasici;
- Raffinamento strutturale
 - Metodo Rietveld;
- Analisi della forma del picco:
 - Dimensione dei cristalliti;
 - Microstrain nel campione.

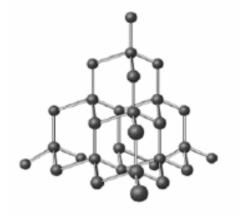

SCHEDA TIPO DEL DATABASE ICDD



PROPRIETÀ DIPENDENTI DALLA EL STRUTTURA CRISTALLINA

 Esempio di grafite e diamante, due forme polimorfe del carbonio.





■ Polimorfismo: fenomeno per cui una sostanza al variare della temperatura (o pressione) cambia struttura cristallina ($Fe_{\alpha} \rightarrow Fe_{\gamma}$ 900 C)

PROPRIETÀ DIPENDENTI DALLA STRUTTURA CRISTALLINA

- Grafite struttura esagonale con legami forti nei piani e deboli tra i piani
- Diamante struttura covalente con un network tridimensionale di legami C-C (ibridizzazione sp³)

- Grafite dolce e sfaldabile (lubrificante solido) a causa dei piani che scorrono l' uno sull' altro.
- Diamante durissimo (materiale più duro) a causa dei forti legami C-C.
- Ibridizzazione sp² della grafite prevede anche un ulteriore legame π (delocalizzato) \Rightarrow grafite è buon conduttore di elettricità.
- Diamante tra le sostanze più resistive presenti in natura.