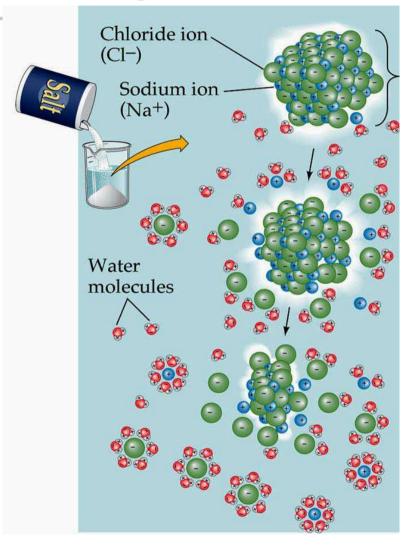
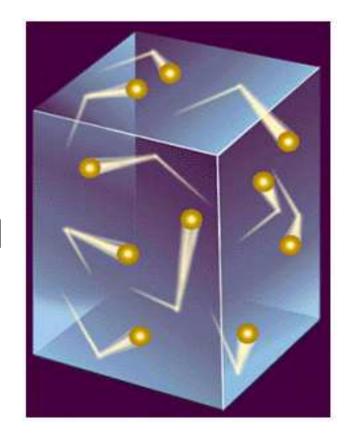


PROPRIETÁ DEI LIQUIDI


- Viscosità: resistenza di un fluido al flusso, ossia scorrimento relativo delle molecole
- Una semplice misura (indiretta) è il tempo di efflusso di un dato volume di liquido attraverso un opportuno capillare
- Forze intermolecolari elevate (legame idrogeno) ⇒ maggiore la viscosità (effetto della temperatura?)

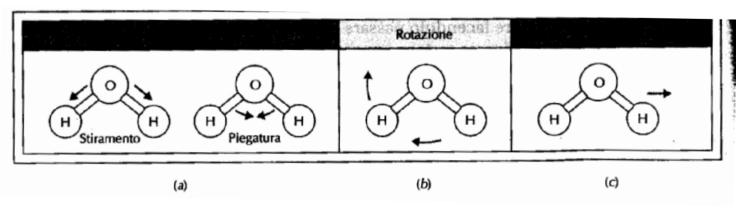
CAPACITA' SOLVENTE DELL'ACQUA LIQUIDA

 Molti solidi ionici sono solubili in acqua grazie alle interazioni ione-dipolo che separano gli ioni dal solido



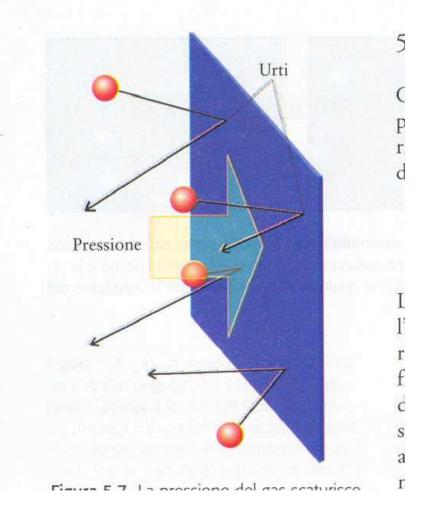
STATO GASSOSO

- Molecole in perenne movimento caotico (temperatura).
- Forze intermolecolari ridotte;
- Volume delle particelle trascurabile rispetto a quello del contenitore;
- Energia trasferita per urti ma costante.



TEMPERATURA

- Misura quantitativa di come "caldo" è un oggetto.
- Movimento delle molecole dipende dalla temperatura
- Scala assoluta (K): a 0 K (–273.15 °C) i movimenti sono minimi

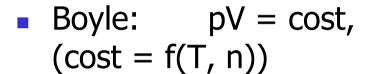


PRESSIONE

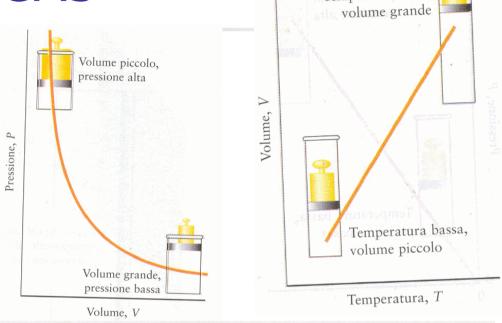
- Forza esercitata dal gas per unità di superficie connessa agli urti delle molecole contro la superficie del contenitore
- p = F/A (N/m² o Pa) unità SI (molto piccola).

ESPERIENZA DI TORRICELL

 $1 \text{ atm} = 1.013 \times 10^5 \text{ Pa} = 0.1013 \text{ MPa} = 1.013 \text{ bar} = 760 \text{ mmHg}$



VOLUME


- Assenza di volume e forma propri ⇒ tendenza ad occupare tutto lo spazio disponibile.
- Altamente comprimibile.
- Formazione di fasi omogenee con altri gas.
- Volume, pressione e temperatura non sono indipendenti (equazione costitutiva).
- Esempio: V aumenta, p diminuisce.

EQUAZIONE COSTITUTIVA DEI

GAS

- Charles: V ∞ T, (costante p e n)
- Avogadro: V ∞ n, (costante p e T)

Temperatura alta,

	22,41
Argo	22,09
Anidride carbonica	22,26
Azoto	22,40
Ossigeno	22,40
Idrogeno	22,43

EQUAZIONE COSTITUTIVA DEI GAS

- Gas perfetti (o ideali):
 - Le molecole del gas non esercitano alcuna influenza reciproca; interagiscono solo al momento degli urti.
 - Le molecole del gas sono puntiformi; non occupano cioè alcun volume.
- Equazione di stato dei gas perfetti:

$$pV = nRT$$

EQUAZIONE COSTITUTIVA DE GAS

$$pV = nRT$$

- R = costante dei gas = $0.082 \text{ L}\cdot\text{atmmol}^{-1}\text{K}^{-1}$ = $8.314 \text{ Jmol}^{-1}\text{K}^{-1}$
- T = temperatura assoluta = 273.15 + °C
- Condizioni standard o normali (TPS):
 - \blacksquare P = 1 atm, T = 0 °C = 273.15 K
 - Volume molare standard = 22.4 L

ALCUNE APPLICAZIONI DELLE LEGGE DEI GAS PERFETTI

Densità di un gas:

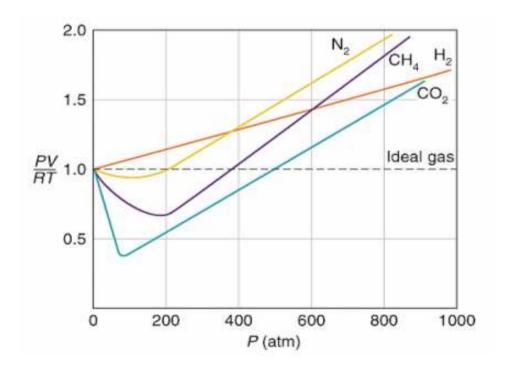
$$d = \frac{pM}{RT}$$

- Miscele gassose Legge di Dalton delle pressioni parziali:
- $p = p_1 + p_2 + p_3 + ...$
- $p_i = n_i (RT/V)$
- $p_{tot} = n_{tot} (RT/V)$

ALCUNE APPLICAZIONI DELLE LEGGE DEI GAS PERFETTI

Frazione molare (misura della concentrazione) x_i:

$$x_i = \frac{n_i}{\sum n_i}$$


- $p_i = x_i p_{tot}$
- Gas perfetti astrazione; numerose miscele gassose e gas puri hanno comportamento da gas perfetto: aria, O₂, N₂, Ar, He (a pressione atmosferica e T > temperatura ambiente).

GAS REALI

- Per 1 mole di gas perfetto PV/RT = 1 ad ogni p.
- Deviazione (effetto della pressione) per i gas reali:

GAS REALI

- Ragioni di non idealità nel comportamento dei gas:
 - Le molecole occupano un certo volume (es.: O_2 a 1 atm $V_{mol} = 0.13$ %, a 100 atm 17 %);
 - Le molecole hanno una certa interazione mutua (forze secondarie)
- Due modi diversi per tenere conto delle deviazioni dal gas perfetto:
 - Equazione di Van der Waals
 - Fattore di compressibilità

GAS REALI

Equazione di Van der Waals:

$$\left(p + \frac{an^2}{V^2}\right)(V - nb) = nRT$$

- a e b costanti empiriche diverse per ogni gas
- Fattore di compressibilità:

$$z = \frac{pv}{RT}$$

- $z = f(p_r, T_r)$ dove $p_r = p/p_{cr} e T_r = T/T_{cr}$
- Diagrammi generalizzati di z.

COSTANTI DELLA EQUAZIONE VAN DER WAALS

Gas	a (L²atm/mol)	b (L/mol)
He	0.03412	0.02370
Ne	0.2107	0.01709
H ₂	0.2444	0.02661
O ₂	1.360	0.03803
CH ₄	2.253	0.04278
CO ₂	3.592	0.04267
NH ₃	4.170	0.03707