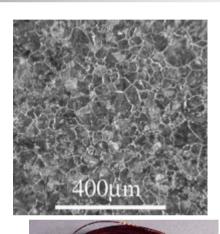
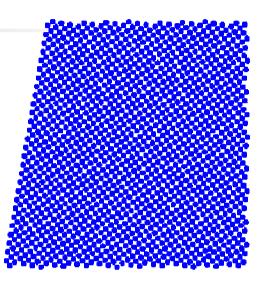
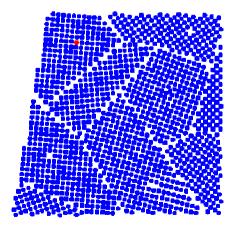


SOLIDI

- Stato di aggregazione della materia caratterizzato da forma e volume proprio; gli atomi (ioni, molecole) si trovano in posizioni fisse e molto spesso ordinate nello spazio:
 - Solido amorfo: ordine a corto raggio ma non a lungo raggio (liquido congelato);
 - Monocristallo: ordine a lungo raggio che interessa tutto il blocco di materiale (raro);
 - Policristallo: il blocco di materiale è fatto da una moltitudine di grani cristallini, ognuno di ordine a lungo raggio (situazione comune)

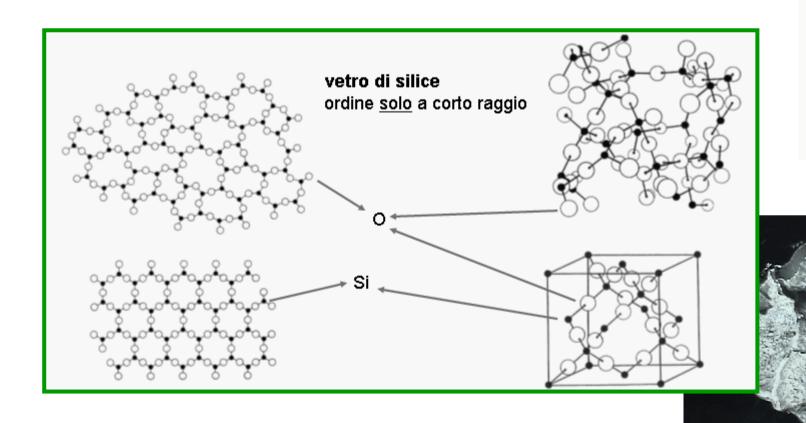

SOLIDI


Monocristallo di silicio



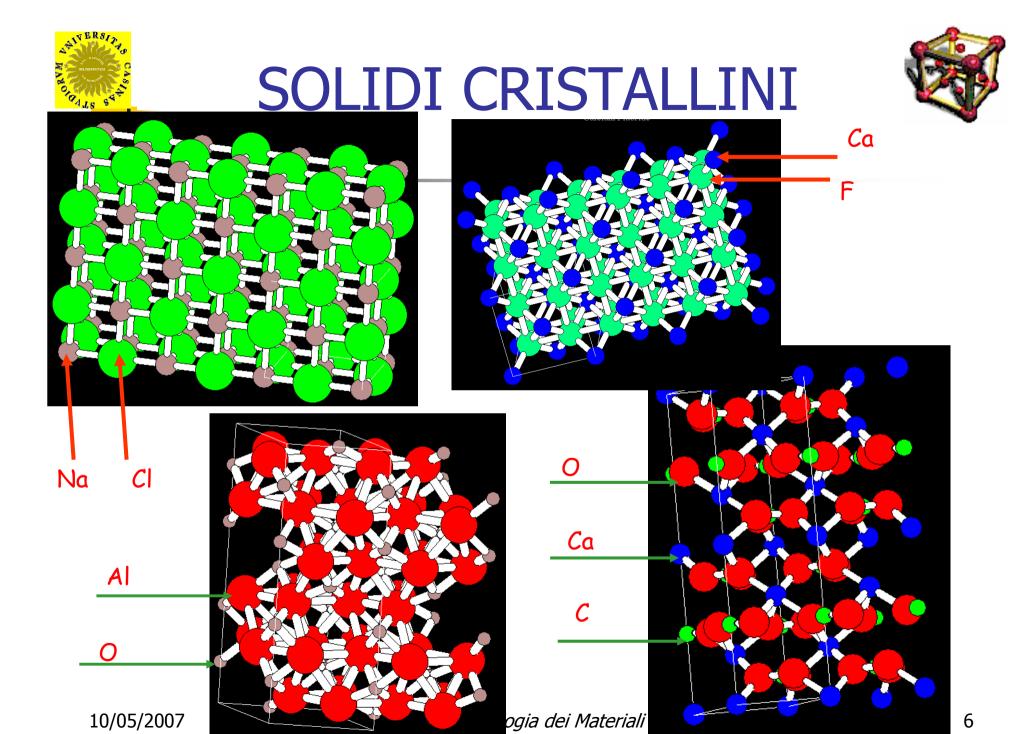
Monocristallo in superlega al nichel

Policristallo di rame



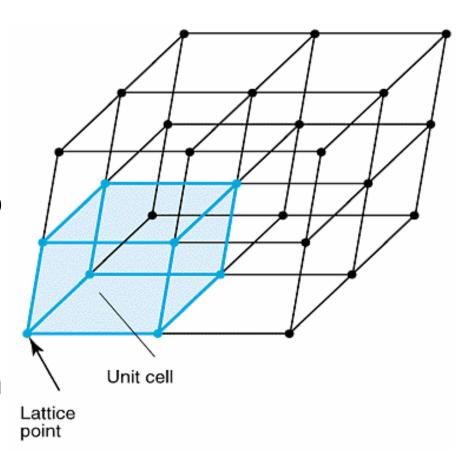
SOLIDI

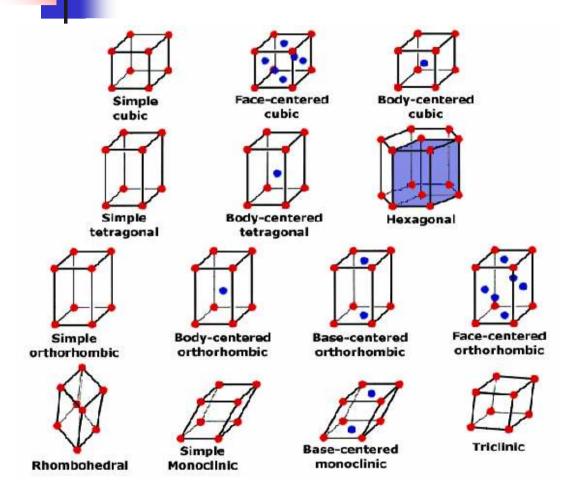
ESEMPI DI SOLIDI E STRUTTURE

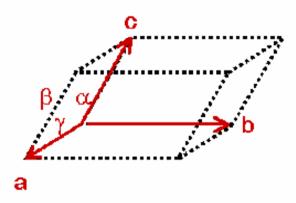

MATERIALE	STRUTTURE	ESEMPI PRATICI
Metalli	Policristallino	Rame per cavi. Leghe ferromagnetiche.
	Amorfo (raro)	Vetri metallici magnetici.
Ceramici	Policristallino	Superconduttori alta Tc
		Al ₂ O ₃ , CaCO ₃
	Amorfo	Vetri
Semiconduttori	Monocristallo	Silicio, germanio
Polimeri	Cristallino Amorfo	Materiali polimerici spesso contengono frazioni di varia struttura.

SOLIDI CRISTALLINI

- Interesse prevalente verso i solidi cristallini.
- Tipi di solidi cristallini:
 - Solidi metallici: Cu, Au, Fe, Al;
 - Solidi ionici: NaCl, MgO, CaF₂;
 - Solidi covalenti: C (diamante e grafite), SiO₂;
 - Solidi molecolari: ghiaccio (H₂O), naftalina (C₁₀H₈), zucchero (C₁₂H₂₂O₁₁).
- Spesso solidi a legame intermedio.




SOLIDI CRISTALLINI


- Reticolo cristallino: Oggetto puramente geometrico di punti disposti in modo regolare e periodico nello spazio, in modo che ogni punto abbia intorno lo stesso "panorama" di qualunque altro punto e che tutto lo spazio sia occupato.
- Ad ogni punto può corrispondere un atomo o un gruppo di atomi.

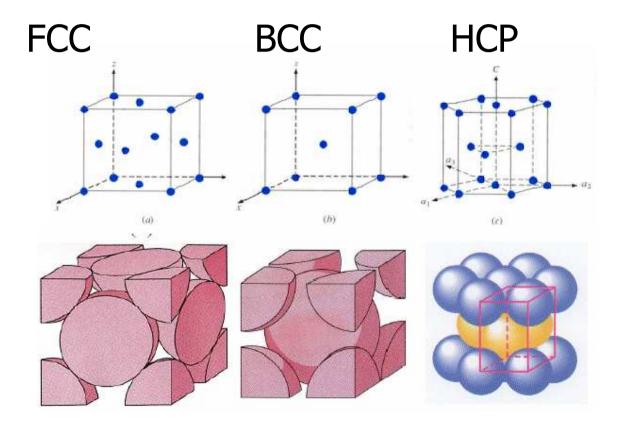
14 RETICOLI DI BRAVAIS

Parametri di reticolo:

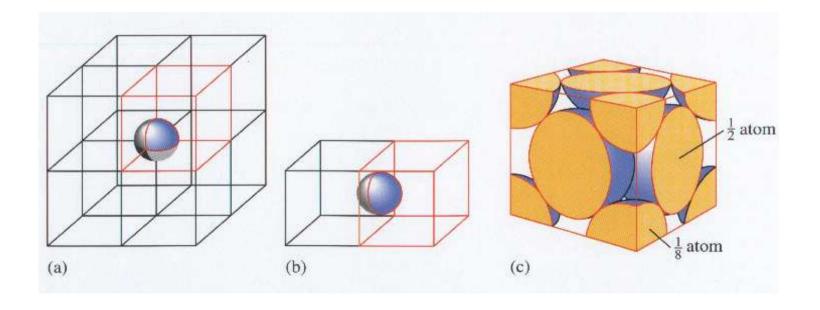
a, b, c spigoli della cella

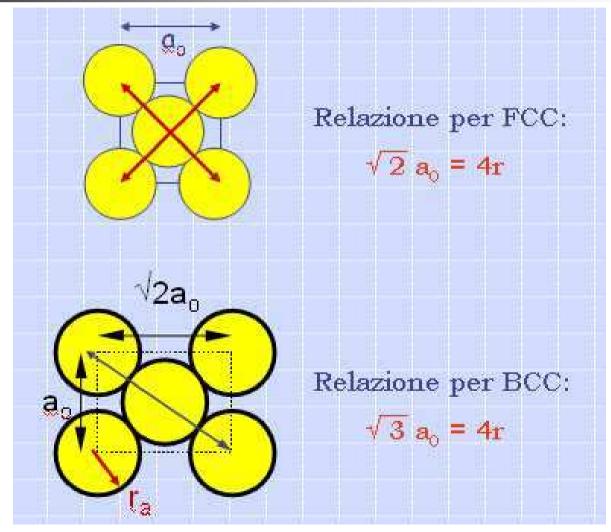
 α , β , γ angoli

Crystal System	Axial Relationships	Internatial Angles	Unit Cell Geometry
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	


Parametri di reticolo per i diversi sistemi cristallini

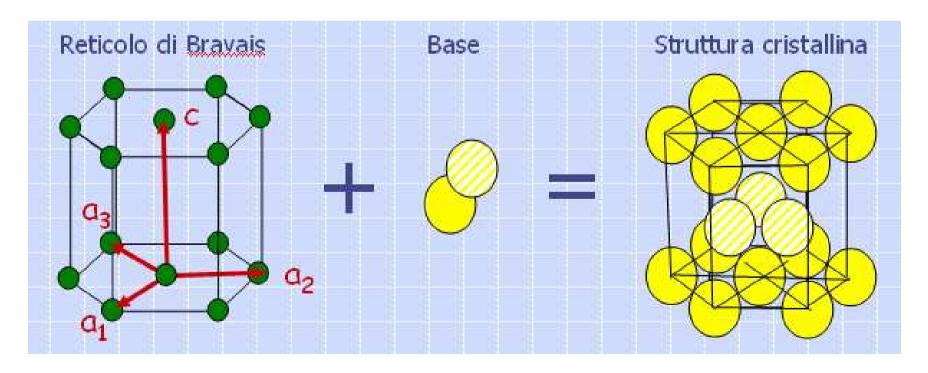
Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$	
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	
Rhombohedral	a = b = c	$\alpha=\beta=\gamma\neq90^{o}$	D. J.
Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	
Monoclinic	$a \neq b \neq c$	$\alpha \sim \gamma = 90^{\circ} \neq \beta$	T
Triclinic	$a \neq b \neq c$	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	


90 % metalli ha 3 strutture cristalline

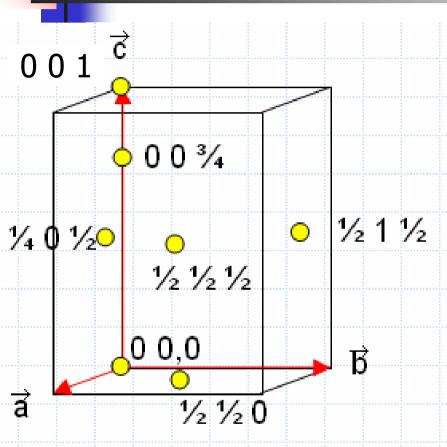


- Numero di coordinazione e fattore di impacchettamento.
- Per FCC: NC = 12 e FI = 74 %

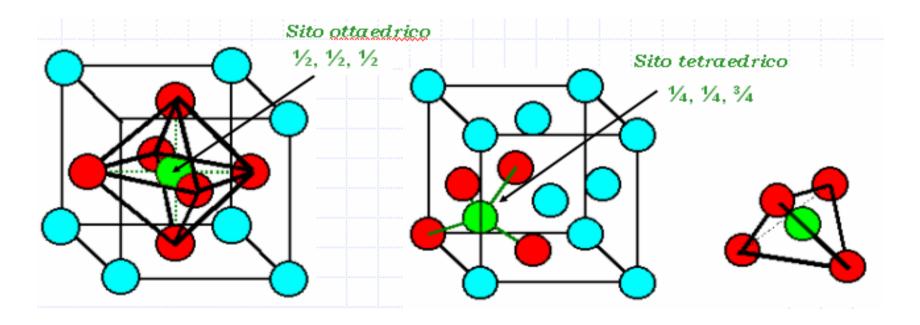
Similitudine tra FCC e HCP



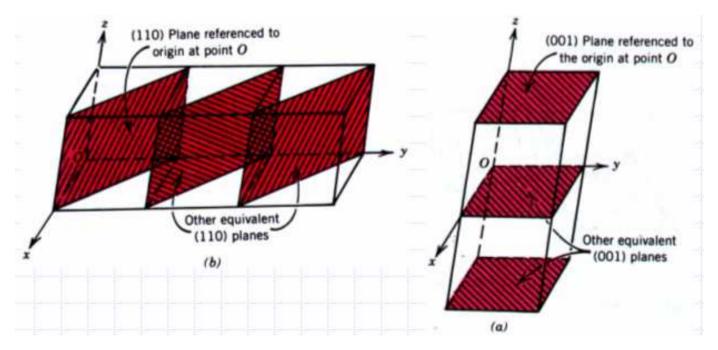
RELAZIONE TRA RETICOLI E STRUTTURE CRISTALLINE


- Per strutture BCC e FCC immediato (un atomo per ogni punto reticolare).
- Per strutture HCP:

PUNTI DI RETICOLO

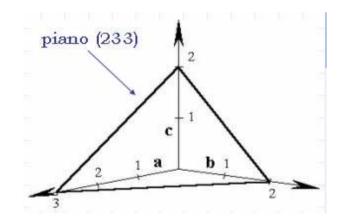

- Individuazione delle posizioni reticolari:
 - Ricavare le coordinate assolute del punto;
 - Dividere ogni coordinata assoluta per il parametro di reticolo corrispondente;
 - La terna ottenuta rappresenta le coordinate di reticolo del punto dato

SITI INTERSTIZIALI

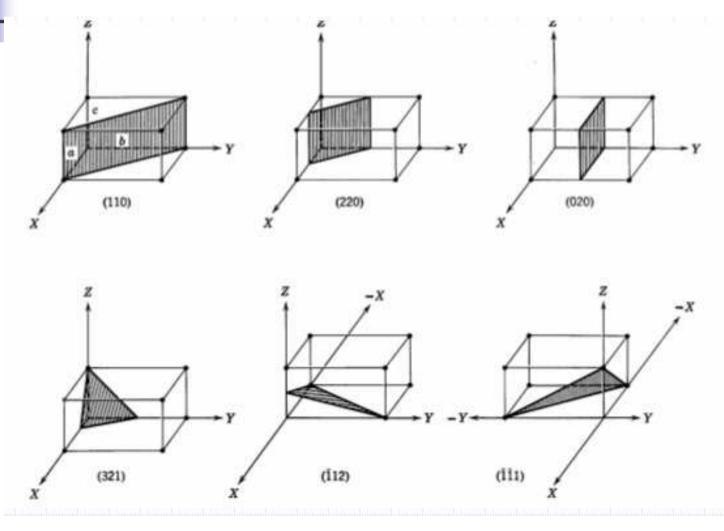

- Vuoti presenti strutture cristalline;
- Molto importanti siti presenti in FCC:

PIANI CRISTALLOGRAFIC

 Piano reticolare o cristallografico: un qualunque piano che attraversa il reticolo cristallino. Questi piani si raggruppano in famiglie di piani paralleli tra loro ed equidistanti che sono sostanzialmente identici. Esempi di alcune famiglie di piani:



INDICI DI MILLER DEI PIANI CRISTALLOGRAFICI



- Metodo di individuazione dei piani reticolari mediante terne di interi (hkl):
 - 1. Intercette del piano con gli assi x, y, z (piano passante per origine)
 - 2. Calcolare inverso di tali intercette;
 - 3. Razionalizzare per eliminare le eventuali frazioni;
 - 4. Chiudere tra parentesi tonde senza virgola.
- Calcolo per il piano a lato:
 - 1. Intercette: 3, 2, 2;
 - 2. Calcolo inverso: 1/3, 1/2, 1/2
 - 3. Razionalizzazione: moltiplicare per 6
 - 4. Chiusura tra parentesi: (233)

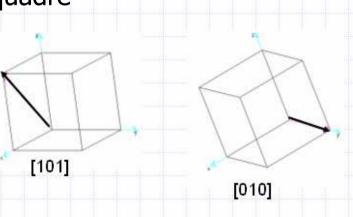
■ Intercetta negativa ⇒ trattino sull' indice

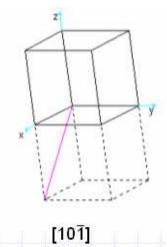
ESEMPI DI INDICI DI MILLER PERIODI ALCUNI PIANI CRISTALLOGRAFICI

CONSIDERAZIONI SUGLI INDICI DI MILLER

- Notazione {hkl}: insieme di famiglie di piani cristallografici che sono tra loro equivalenti; per esempio: {100} rappresenta i piani (100), (100), (010), (010), (001), (001)
- Distanza interplanare (distanza tra due piani successivi) è esprimibile con una legge del tipo:

$$d_{(hkl)} = f(a, b, c, \alpha, \beta, \gamma, h, k, l)$$


Relazione per il sistema cubico:


$$d_{(hkl)} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

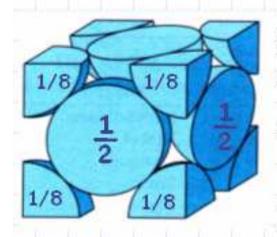
DIREZIONI CRISTALLOGRAFICHE

- Rette intersecanti un reticolo cristallino.
- Rappresentate dagli indici di direzione [hkl].
- Determinazione degli indici di direzione:
 - Direzione passante per l' origine;
 - Coordinate di un punto della direzione;
 - 3. Semplificare per ottenere interi più piccoli;
 - 4. Chiudere tra parentesi quadre
- Coordinate negative indicate con trattino

MASSA VOLUMICA, DENSITÀ SUPERFICIALE E LINEARE

- Massa volumica (densità teorica): massa per unità di volume della sostanza calcolabile da dati cristallografici.
- Densità atomica superficiale: numero di atomi presenti per unità di superficie (dipende dal piano atomico prescelto).
- Densità atomica lineare: numero di atomi presenti per unità di lunghezza (dipende dalla direzione prescelta).

CALCOLO DELLA MASSA VOLUMICA


$$d = \frac{nM}{N_{\rm A}V_{\rm C}}$$

n = numero di atomi nella cella elementare;

M = peso atomico o molecolare della sostanza;

N_A = numero di Avogadro;

 $V_{\rm C}$ = volume della cella elementare

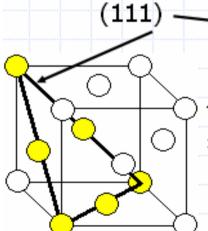
Esempio di calcolo per il rame:

n = 4 (struttura FCC); P = 63.54 g/mol

 $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}; V_C = a^3 = (3.615 \times 10^{-8})^3 \text{ cm}^3$

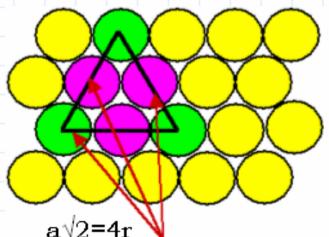
Sostituendo i valori si ottiene:

 $d = 8.93 \text{ g/cm}^3$ (valore reale: 8.96 g/cm³)


Errore relativo = $0.3 \% \Rightarrow$ risultato ottimo.

CALCOLO DELLA DENSITÀ C SUPERFICIALE

- 1. Selezionare una parte del piano di area nota (A);
- 2. Individuare gli atomi appartenenti a tale area;
- Sommare le aliquote di atomi appartenente all'area (n);
- Calcolare la densità atomica superficiale come n/A.

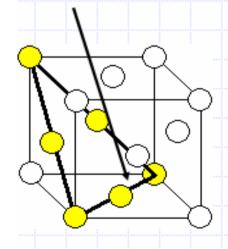


$$A = \frac{1}{2} (a\sqrt{2})^2 \sqrt{3}/2$$

$$n = \frac{1}{2} \times 3 + \frac{1}{6} \times 3$$


da cui

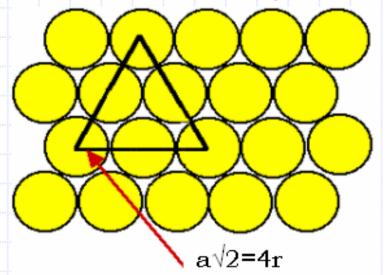
$$d = \sqrt{3} a^2/4$$


CALCOLO DELLA DENSITÀ LINEARE

- 1. Selezionare un segmento della direzione (L);
- 2. Individuare gli atomi appartenenti a tale segmento;
- Sommare le aliquote di atomi appartenente al segmento (n);

 $[1\bar{1}0]$

4. Calcolare la densità atomica lineare come n/L.



$$L = (a\sqrt{2})$$

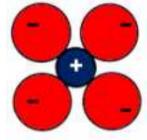
$$n = \frac{1}{2} \times 2 + 1$$

da cui

$$d_{Lin} = \sqrt{2} a/2$$

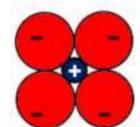
SOLIDI IONICI

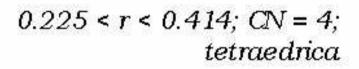
- Stabilità del solido assicurato dalla attrazione elettrostatica tra ioni di segno opposto:
- Ogni catione tende ad essere circondato dal maggior numero di anioni e viceversa.
- La struttura cristallina dipende soprattutto dalle dimensioni relative tra anioni e cationi.



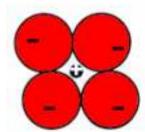
COORDINAZIONI DEI SOLIDI IONICI

$$r = r_C/r_A$$

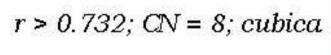

r < 0.155; CN = 2; lineare



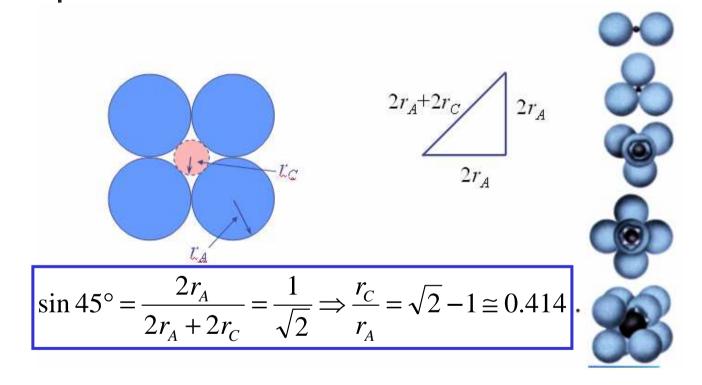
Configurazione stabile 0.155 < r < 0.225; CN = 3; triangolare



Configurazione stabile



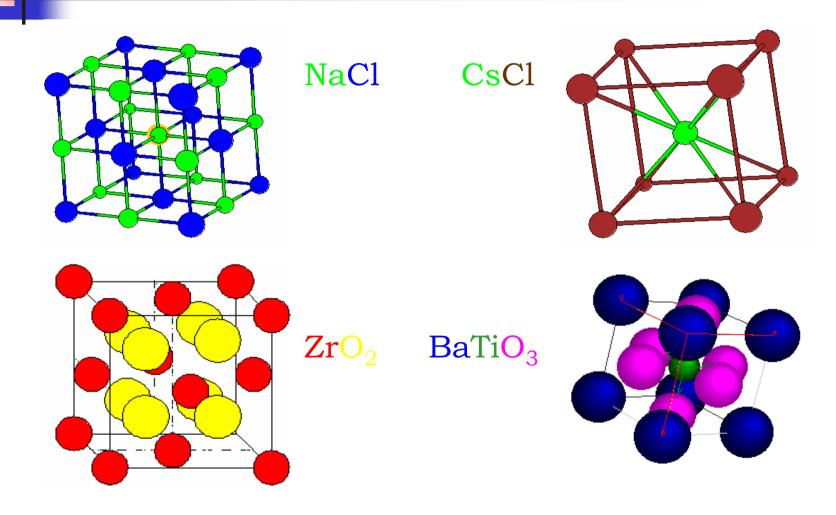
Configurazione instabile deve diminuire il CN 0.414 < r < 0.732; CN = 6; ottaedrica



ESEMPIO DI CALCOLO

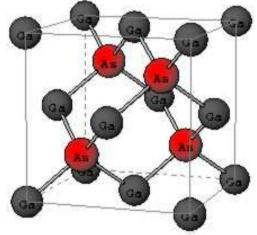
- Esempio di calcolo per la coordinazione ottaedrica.
- Verifica degli altri rapporti.

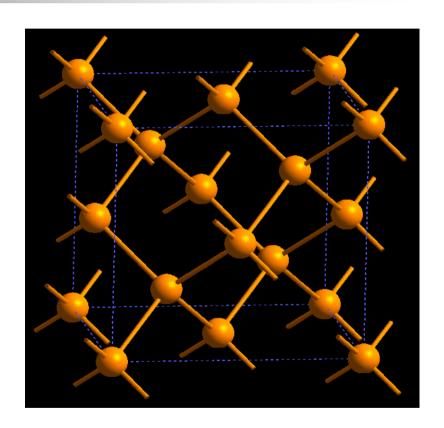
STRUTTURA CRISTALLINA DALLA COORDINAZIONE



- Passaggi per stimare la struttura di MX:
 - 1. Trovare il rapporto r_A/r_C ;
 - 2. Trovare il CN corrispondente;
 - Se CN = 4 o 6 distribuire gli X (anioni) in reticolo FCC, con CN = 8 distribuire gli anioni in reticolo SC;
 - Inserire i cationi negli appropriati siti interstiziali, in modo che sia conservata la neutralità elettrica del cristallo.
- Esempio per NaCl:
 - $r(Na^+) = 0.102 \text{ nm}; \ r(Cl^-) = 0.181 \text{ nm} \implies r = r(Na^+)/r(Cl^-) = 0.56$
 - \Rightarrow CN = 6
 - ⇒ disporre gli ioni Cl⁻ secondo la struttura FCC;
 - ⇒ disporre gli ioni Na+ nei siti interstiziali ottaedrici;
 - \Rightarrow verificare la neutralità (n. siti ottaedrici = n. atomi in FCC)
 - ⇒ TUTTI i siti ottaedrici devono essere occupati da Na+

ESEMPI DI STRUTTURE SOLIDI IONICI



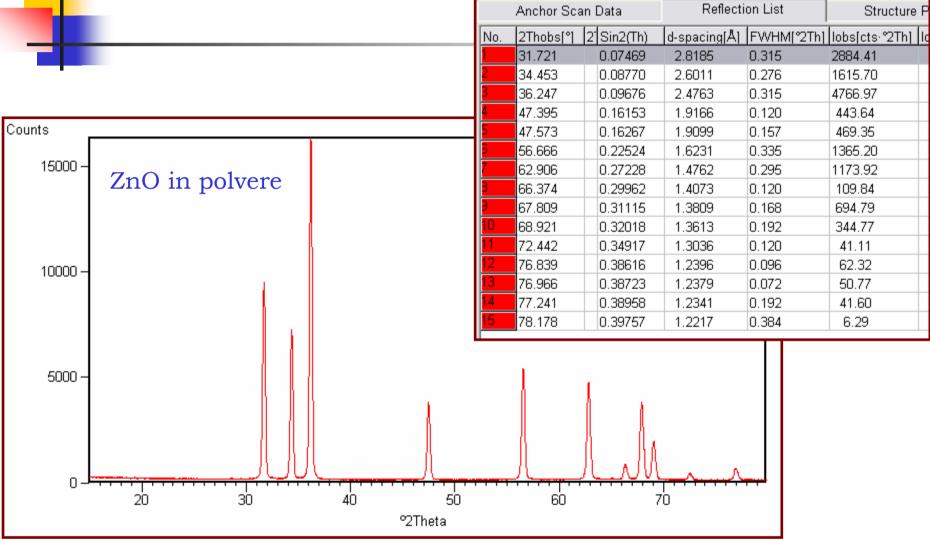


SOLIDI COVALENTI

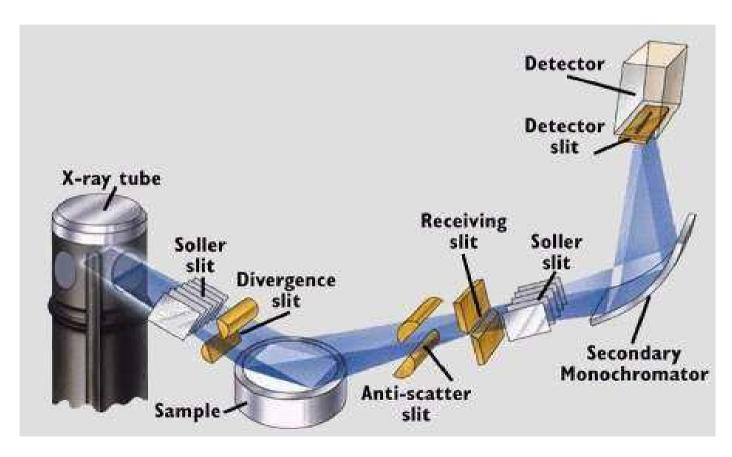
- Le posizioni atomiche sono determinate dalla direzionalità del legame covalente.
- Esempi del Si e di
 GaAs.

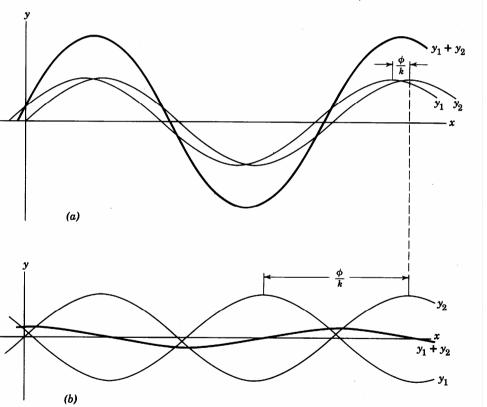
DIFFRAZIONE AI RAGGI X

- La periodicità delle strutture cristalline fu scoperta nel 1912 con interazione con raggi X di un cristallo di NaCl.
- La radiazione uscente dal solido per determinati angoli di incidenza è particolarmente intensa, mentre altrove è limitata ad un rumore di fondo.
- Interazione costruttiva ⇒ periodicità nella disposizione atomica.
- La distanza interatomica ≈ lunghezza d'onda della radiazione.


DIFFRAZIONE AI RAGGI X

- Il fenomeno della interazione costruttiva della radiazione uscente dal solido cristallino colpito da raggi X è detta DIFFRAZIONE.
- L'analisi oggi è condotta in apparecchiature a controllo elettronico dette DIFFRATTOMETRI.
- Il risultato dell'analisi diffrattometrica è un grafico detto spettro di diffrazione, con un listato contenente posizione angolare ed intensità dei picchi misurati.

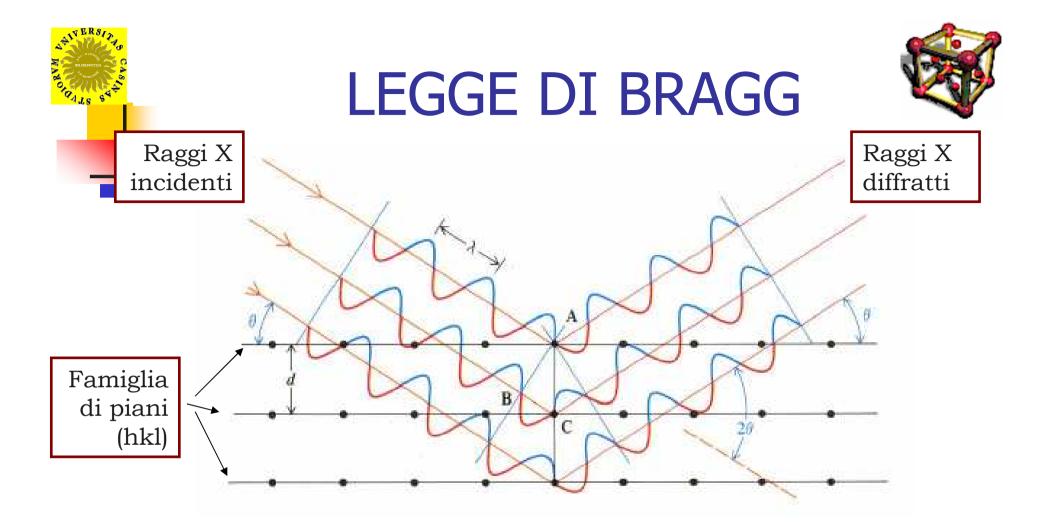

SPETTRO DI DIFFRAZIONE



SCHEMA DEL DIFFRATTOMETRO

INTERFERENZA DELLA RADIAZIONE ELETTROMAGNETICA

 Due onde che viaggiano insieme possono avere interferenza costruttiva (a) oppure distruttiva (b) in funzione della posizione relativa dei massimi e dei minimi.


DIFFRAZIONE

- La diffrazione è l' interferenza che subisce la radiazione elettromagnetica che diffonde da un oggetto posto sul cammino della radiazione.
- La diffrazione può essere descritta in più modi.
- Legge di Bragg.

DIFFRAZIONE SECONDO BRAGG

- Un reticolo cristallino è fatto da un accatastamento di piani reticolari;
- La diffrazione è assimilabile ad una semplice riflessione da parte dei piani reticolari;
- I raggi X riescono a penetrare anche dentro il reticolo, per cui ci sono raggi diffusi anche da piani reticolari interni.

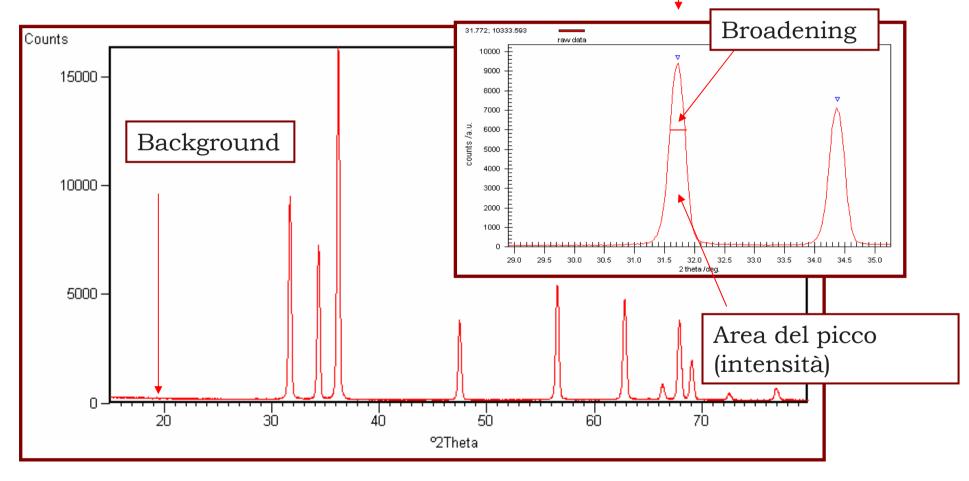
- Raggi diffratti in fase se Δ (cammino) è pari a λ o a n λ .
- $2BC = n\lambda$; $BC = d \cdot \sin \theta$.
- Legge di Bragg

$$n\lambda = 2d_{(hkl)}sin\theta$$

UTILIZZO DELLA LEGGE DI BRAGG

- Legge di Bragg + formula della distanza interplanare:
 - Dai dati di diffrazione ai raggi X possibile la determinazione dei parametri di reticolo ed inoltre l'indicizzazione (assegnare ad ogni picco di diffrazione la terna (hkl) corrispondente).
 - Posizione angolare dei picchi ⇔ distanze interplanari.
 - Intensità dei picchi ⇔ posizione degli atomi nei piani.
- Operazione agevole per il sistema cubico.

SPETTRO DI DIFFRAZIONE


Caratteristiche salienti:

- Posizione angolare (2θ) dei picchi → dipende dalle distanze interatomiche;
- Intensità dei picchi (area del picco) → dipende dagli atomi presenti nella cella elementare e dalle loro posizioni;
- Broadening dei picchi → dipende dalla microstruttura e dalle imperfezioni del materiale;
- Rumore di fondo (background) → dipende dalle interazioni casuali della radiazione con l' aria, il diffrattometro, ecc.

SPETTRO DI DIFFRAZION

Angolo 2θ del picco

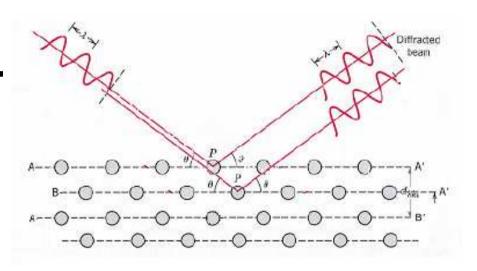
POSIZIONE ANGOLARE DEI PICCHI

Relazioni per il sistema

cubico

$$d_{(hkl)} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$n\lambda = 2d_{(hkl)} \sin \theta$$


$$n = 1$$

$$\sin \theta = \frac{\lambda \sqrt{h^2 + k^2 + l^2}}{2a}$$

INTENSITÀ DELLA DIFFRAZIONE

- Fenomeno delle estinzioni sistematiche.
- Esempio della diffrazione dai piani (100) nella struttura BCC.
- Piani A e piani B danno raggi diffratti in opposizione di fase.

ESTINZIONI SISTEMATICHI

- Cubico semplice: nessuna estinzione
- Cubico a corpo centrato: diffrazione presente solo per h + k + l = 2n
- Cubico a facce centrate: diffrazione presente solo per h, k, l tutti pari o tutti dispari (0 è pari)
- Esagonale compatto: estinzione per h + 2k = 3n e l dispari

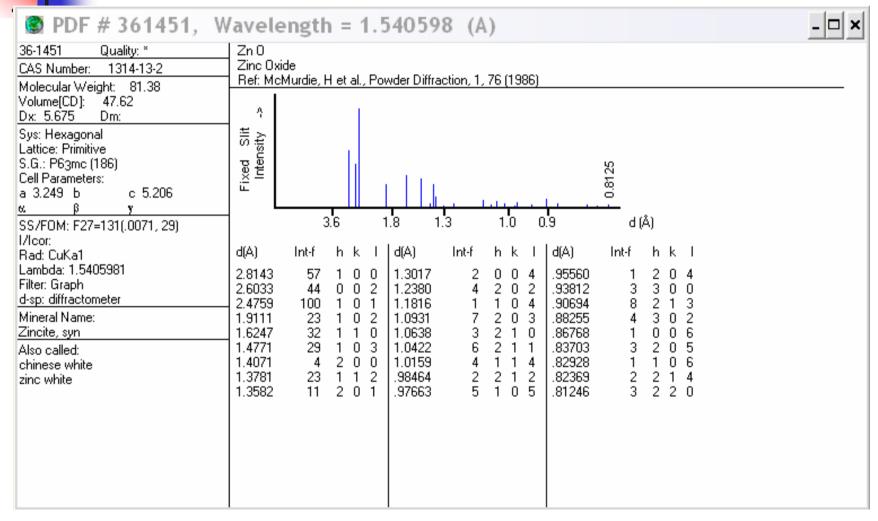
RISOLUZIONI DI STRUTTURE CUBICHE

{hkl}	\sum (h ² +k ² +l ²)	FCC	BCC
{100}	1		
{110}	2		SI
{111}	3	SI	
{200}	4	SI	SI
{210}	5		
{211}	6		SI
{220}	8	SI	SI
{221}	9		
{310}	10		SI

$$\frac{\sin^2 \theta_1}{\sin^2 \theta_2} = \frac{3}{4} = 0.75 \text{ (FCC)}$$

$$\frac{\sin^2 \theta_1}{\sin^2 \theta_2} = \frac{2}{4} = 0.50 \text{ (BCC)}$$

Se le condizioni precedenti non sono verificate, si può operare con un procedimento per tentativo.


DIFFRAZIONE SU POLVER

- Analisi qualitative:
 - Identificazione delle fasi;
- Analisi quantitative:
 - Determinazioni dei parametri di reticolo;
 - Determinazione della composizione di sistemi plurifasici;
- Raffinamento strutturale
 - Metodo Rietveld;
- Analisi della forma del picco:
 - Dimensione dei cristalliti;
 - Microstrain nel campione.

SCHEDA TIPO DEL DATABASE ICDD

