Modalità di programmazione

- On-line programming
 - skill
 - down-time
 - accurate

- Off-line programming (OLP)
 - graphic tools
 - less down-time
 - less accurate

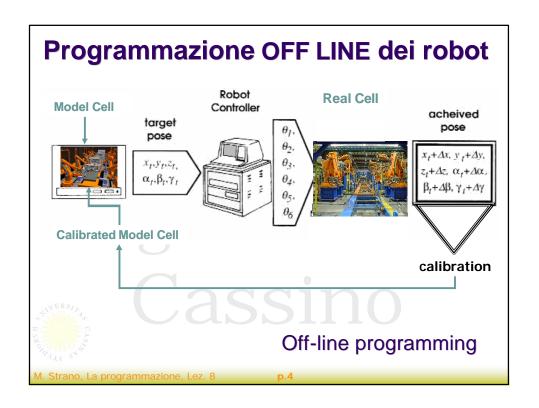
M. Strano, La programmazione, Lez.

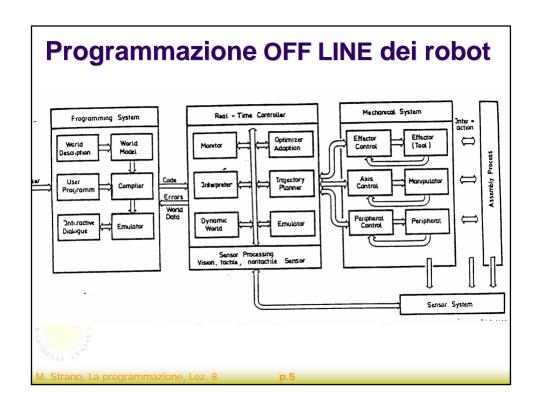
n '

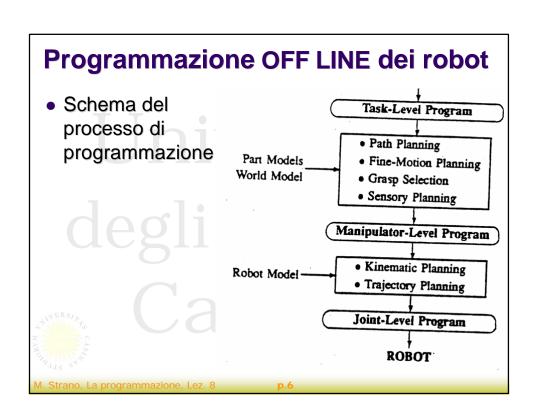
Modalità di programmazione

- Off-line programming
 - vantaggi
 - Effective programming of program logics
 - calculations with state-of-the -art debugging facilities
 - Process support tools for instance selection of welding parameters
 - Verification of program through simulation and visualization
 - Well documented through simulation model with appropriate programs
 - Reuse of existing CAD data
 - Cost independent of production
 - Production can continue while programming
 - svantaggi
 - Investimento iniziale nel software e per costi/tempi di apprendimento
 - Necessità di calibrazione

M. Strano, La programmazione, Lez. 8

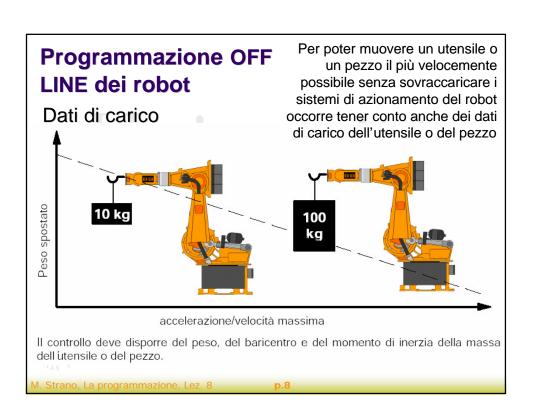

p.:


Modalità di programmazione

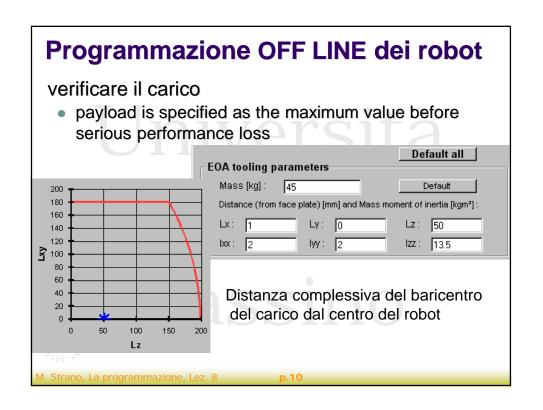

- · A robot program consists mainly of two parts
 - Locations
 - (position and alignment)
 - program logics
 - (controller structures, communication, calculations)
- hybrid programming
 - OFF LINE
 - The program logics
 - effective debugging and simulation facilities are available
 - The major part of movement commands
 - reuse of CAD data and interaction of the programmer
 - ON LINE
 - Movement commands to locating the placement of the piece in the robot's workcell

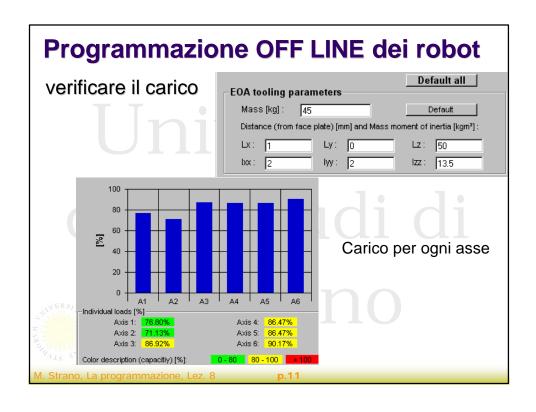
M. Strano, La programmazione, Lez. 8

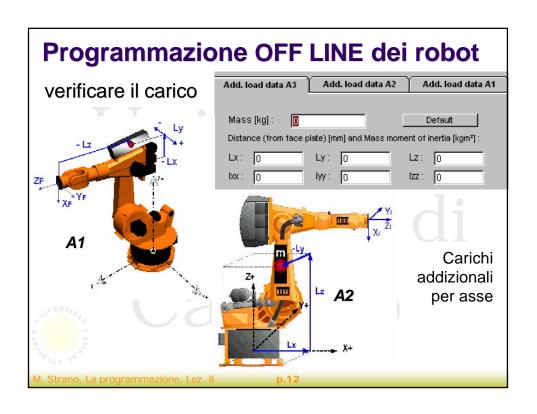
p.,

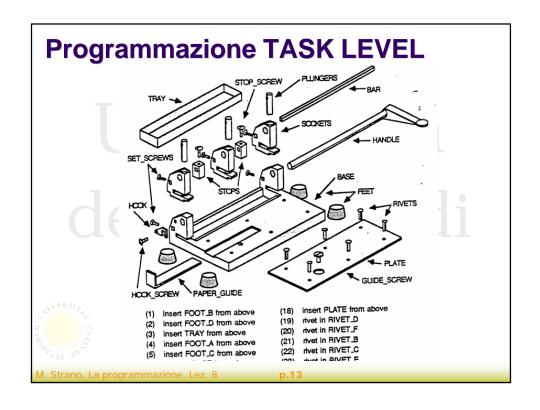


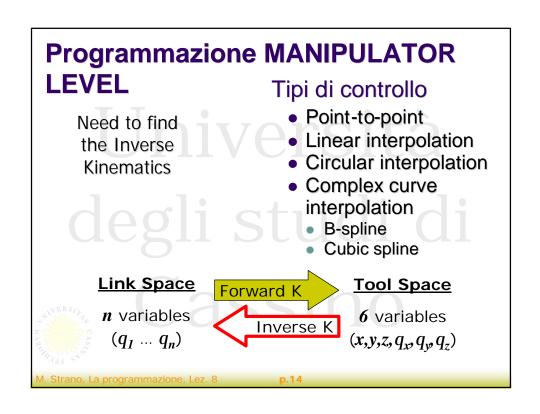
Programmazione OFF LINE dei robot

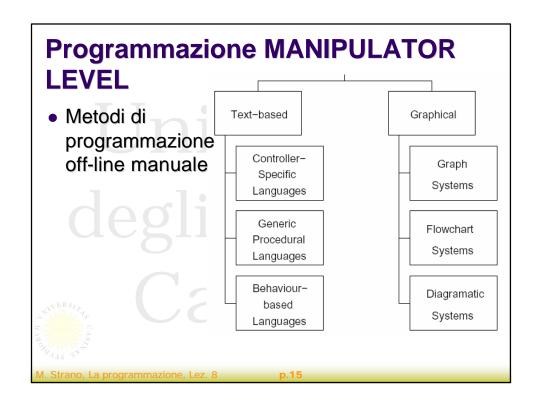

Passi da compiere

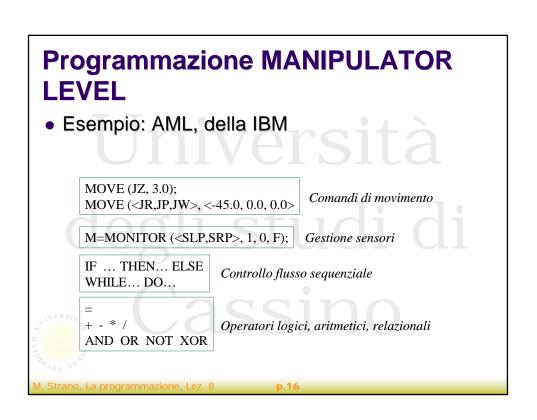

- Definire il prodotto
- 2. Definire il ciclo (e verificare il carico)
- 3. Definire lo spazio di lavoro
- Definire i punti di riferimento per il robot (keypoints)
- 5. Scrivere il programma
- 6. Definire i punti di riferimento effettivi
- 7. Verificare il programma

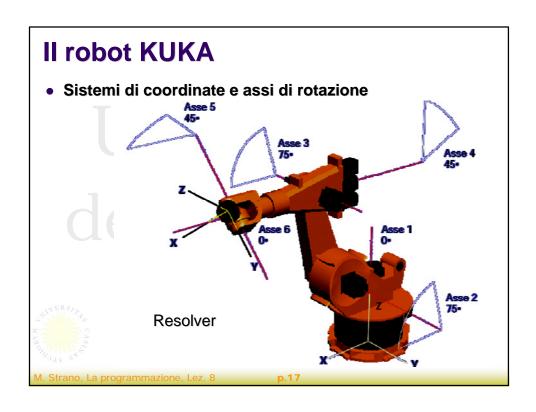

M. Strano, La programmazione, Lez.




Programmazione OFF LINE dei robot verificare il carico payload is specified as the maximum value before serious performance loss **IKEN Lead? **Par Bal Ural Holy General robot dale Customer: Redot type: Redot type: Redot type: Redot type: Redot type: Los Cooling: Analysis report Redot type: Los Cooling: Redot type: Redot type: Los Cooling: Redot type: Redot type







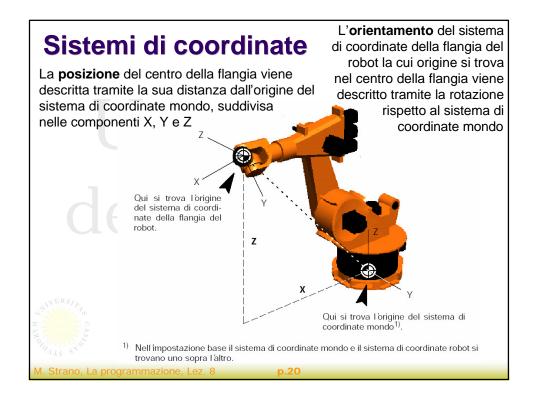
- Calibrazione del robot
 - gli assi vengono portati in una posizione meccanica definita, la cosiddetta posizione zero meccanica.
 - correlazione con l'angolo di azionamento asse e viene definita tramite una tacca di misura o un contrassegno
 - viene memorizzato il valore assoluto del trasduttore per

ogni asse

Una calibrazione dev'essere effettuata...

...dopo riparazioni

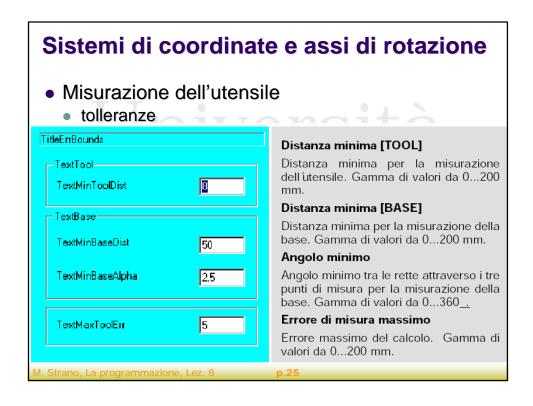
(ad es. sostituzione del motore di azionamento o RDW)


...se il robot è stato spostato senza controllo (ad es. con la manovella)

...dopo il tamponamento di un arresto di finecorsa meccanico con una velocità superiore a quella manuale (20 cm/s)

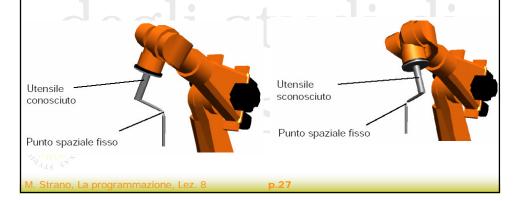
...dopo la collisione dell'útensile o robot con un pezzo in lavorazione

M. Strano, La programmazione, Lez.



• Misurazione dell'utensile

Programma	Misurazione tramite
XYZ - 4-punti	Spostamento su un punto di riferimento fisso
XYZ - Riferimento	Spostamento con un utensile di riferimento noto
ABC - 2_punti	Spostamento su 2 punti con dati di orientamento
ABC - mondiale	Posizionamento verticale sul sistema di coordinate mondo
Registrazione numerica	Immissione dei dati dell utensile
Dati di carico dell'uten- sile	Immissione della massa, del centro della massa, del momento di inerzia della massa



M. Strano, La programmazione, Lez. 8

- Misurazione dell'utensile
 - Posizione: XYZ --riferimento
 - i dati di un utensile da misurare vengono rilevati tramite il confronto con un utensile noto spostandosi su un punto di riferimento

Sistemi di coordinate e assi di rotazione

- Misurazione dell'utensile: rotazione
 - ABC -2_punti
 - se per il posizionamento e la guida è necessario un orientamento esatto dei tre assi dell'utensile. Esso richiede la presenza di punti contrassegnati sul lato positivo del piano XY e sul lato negativo dell'asse X dell'utensile
 - ABC mondiale (5D)
 - se è necessaria soltanto la direzione di lavoro dell'utensile per il suo posizionamento e la sua guida (saldatura MIG/MAG, taglio con laser o con getto d'acqua).
 - ABC -- mondiale (6D)
 - se è necessario l'orientamento di tutti i tre assi dell'utensile per il posizionamento e la guida (ad es. pinze di saldatura, gripper, ugelli di adesivo, ecc.)

M. Strano, La programmazione, Lez. 8

Programma		Misurazione tramit	te
3-punti	Spostamento zione	sul punto di riferimento di	un pezzo in lavora-
Indiretto	Indicazione de pezzo in lavor	el punto di riferimento noi azione	n raggiungibile di un
Immissione numerica	Immissione m	anuale di un punto di rifei	rimento
A THE I		x-	Y
Origine	Punto sull'asse X	Punto sul piano XY con valore Y	Risultato

positivo

Sistemi di coordinate e assi di rotazione

I sistemi di coordinate

- specifico per asse
 - Ogni asse del robot da A1 ad A6 può essere spostato singolarmente in direzione positiva o negativa
- TOOL
 - Un sistema di coordinate ortogonale che ha la sua origine nella punta dell'utensile.
- BASE
 - Sistema di coordinate ortogonale che ha la sua origine sul pezzo in lavorazione
- WORLD
 - Sistema di coordinate ortogonale fisso che ha la sua origine nel piede del robot

M. Strano, La programmazione, Lez. 8

- I sistemi di coordinate
 - Sistema di coordinate BASE
 - Sistema di coordinate ortogonale che ha la sua origine sul pezzo in lavorazione
 - Il sistema di coordinate BASE si sposta soltanto insieme ad un pezzo se questo è applicato su una cinematica esterna, accoppiata in modo matematico.

N Strong La programmoz

Sistemi di coordinate e assi di rotazione

- I sistemi di coordinate
 - Sistema di coordinate WORLD
 - Sistema di coordinate ortogonale fisso che ha la sua origine nel piede del robot

In caso di selezione del sistema di coordinate "TOOL", "BASE" o "WORLD", normalmente vengono spostati più assi in sincrono

M. Strano, La programmazione, Lez.

- Il control panel
 - Il KUKA Control Panel, denominato "KCP", costituisce l'interfaccia tra uomo e macchina per il comando semplice del controllo robot KR C1.
 - Tutti gli elementi per la programmazione e il comando del sistema robot ad eccezione dell'interruttore principale sono alloggiati direttamente sul KCP

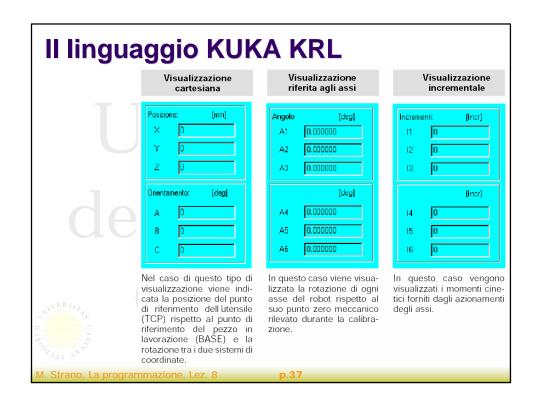
M. Strano, La programmazione, Lez. 8

p.35

II linguaggio KUKA KRL

- Spostamento manuale del robot
 - Lo spostamento manuale serve per il movimento del robot sotto comando manuale, ad esempio per l'insegnamento di punti di destinazione o per portare il robot fuori ingombro dopo che un asse del robot ha urtato contro uno dei fine corsa software

- Spostamento con lo "space--mouse"
 - in base all'impostazione dei gradi di libertà contemporaneamente tre oppure sei assi



- Spostamento con i tasti di spostamento
 - ogni asse singolarmente

Spostamento manuale disattivato

M. Strano, La programmazione, Lez. 8

- Esecuzione, arresto e reset di un programma
 - Scelta e selezione di un programma
 - Scegliere col tasto cursore "-" oder "-" il programma desiderato ed azionare il softkey "Selezionare" (in basso a sinistra del display). Appare il testo del programma
 - Esecuzione manuale del programma
 - disinserire lo spostamento manuale
 - passo per passo (una frase di movimento dopo l'altra)
 - eseguito completamente (impostazione "Go")

M. Strano, La programmazione, Lez. 8

- Esecuzione, arresto e reset di un programma
 - Ridurre la velocità di spostamento nel funzionamento in manuale (Override manuale)

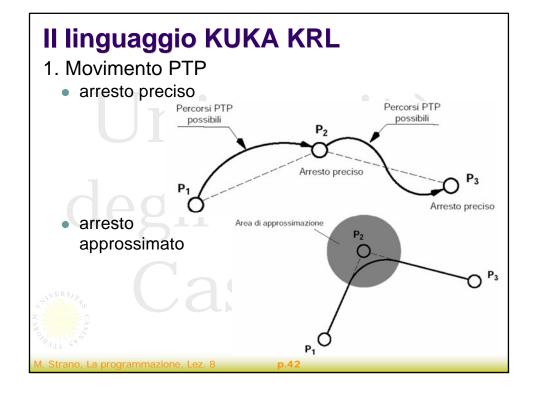
M. Strano, La programmazione, Lez. 🤉

0.39

II linguaggio KUKA KRL

- Istruzioni di programma
 - 0. Ultima istruzione
 - Comando per l'inserimento dell'istruzione eseguita per ultima;
 - 1. Movimento
 - Consente la programmazione di movimenti PTP, LIN e CIRC;
 - 2. Logica
 - Programmazione di istruzioni logiche e di tempi di attesa, di funzioni di comando e di impulso in base al percorso, settaggio e interrogazione di uscite ed ingressi;
 - 3. CmdAnalog (Uscita analogica)
 - Settaggio delle uscite analogiche sotto controllo del programma;
 - 4. Commento
 - Inserimenti di commenti nei moduli di programma;
 - 5. KRL assistent
 - Programmazione KRL di funzioni speciali supportata da sintassi

M. Strano, La programmazione, Lez. 8

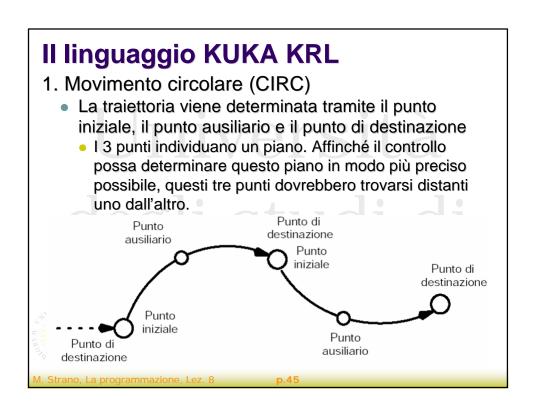

- Istruzioni di programma
 - 1. Movimento

Movimenti standard	
	L'utensile viene spostato lungo la traiettoria più veloce su un punto di destinazione
LIN (lineare)	Guida dell'útensile con velocità definita lungo una retta
CIRC (circolare)	Movimento dell'utensile con velocità definita lungo una curva

In caso di più comandi di movimento successivi esistono due possibilità per definire come deve avvenire il movimento tra i singoli punti:

Movimento tra i singo	li punti
Arresto preciso	Il punto programmato viene raggiunto esattamente.
Approssimazione (Cont)	Un movimento può essere raccordato in modo morbido con un altro, il punto di destinazione non viene raggiunto esattamente.
ATS &	

M. Strano, La programmazione, Lez. 8 p.41


1. Movimento PTP

Campo	Funzione	Gamma valori
PTP	Tipo di movimento	PTP, LIN, CIRC
P1	Denominazione punto	
Tool	Nº utensile	Nullframe, Tool_Data[1][16]
Base	Nº pezzo	Nullframe, Base_Data[1][16]
external TCP	ll robot guida l'útensile/il pezzo	True, False
CONT	Approssimazione inserita	" ", Cont
Vel=100%	Velocità	da 1 a 100% del valore massimo (Valore default 100%)
PDAT1	Parametri di movimento	
Acceleration	Accelerazione	0 100
Approximation Distance *1	Area di approssimazione	0 100
*1 Viene proposto	soltanto se è stato inserito "COI	NT"
M. Strano, La progra	mmazione, Lez. 8 p.43	

II linguaggio KUKA KRL

1. Movimento lineare (LIN)

Campo	Funzione	Gamma valori
LIN	Tipo di movimento	PTP, LIN, CIRC
P1	Denominazione punto	
Tool	Nº utensile	Nullframe, Tool_Data[1][16]
Base	Nº pezzo	Nullframe, Base_Data[1][16]
external TCP	ll robot guida l'útensile/il pezzo	True, False
CONT	Approssimazione inserita	" ", Cont
Vel=2m/s	Velocită	0,001 2m/s (Valore predefinito 2m/s)
CPDAT1	Parametri di movimento	
Acceleration	Accelerazione	0 100
Approximation Distance *1	Area di approssimazione	0 100
*1 Viene proposto	soltanto se è stato inserito "COI	NT"
M. Strano, La progra	mmazione, Lez. 8 p.44	

	o circolare (CIRC)	Io
Campo	Funzione	Gamma valori
CIRC	Tipo di movimento	PTP, LIN, CIRC
21	Denominazione del punto ausiliario	
P2	Denominazione punto	
Tool	Nº utensile	Nullframe, Tool_Data[1][16]
Base	Nº pezzo	Nullframe, Base_Data[1][16]
external TCP	ll robot guida l'útensile/il pezzo	True, False
CONT	Approssimazione inserita	"", Cont
/el=2m/s	Velocità	0,001 2m/s (Valore predefinito 2m/s)
PDAT1	Parametri di movimento	
Acceleration	Accelerazione	0 100
Approximation Distance *1	Area di approssimazione	0 100

2. Logica

- Funzioni di attesa
 - Funzione di attesa in base al tempo (WAIT)
 - In secondi
 - Funzione di attesa in base al segnale (WAITFOR)
 - Wait for in
 - Wait for out
- Funzioni di commutazione
 - Funzione di commutazione semplice (OUT)
 - Funzione impulso semplice (PULSE)
 - Funzione di commutazione in base al percorso (SYN OUT)
 - Funzione impulso in base al percorso (SYN PULSE)
- Accoppiamento e disaccoppiamento del segmento INTERBUS (IBUS--Seg on/off)

M. Strano, La programmazione, Lez. 8

n 47

II linguaggio KUKA KRL

4. Commento

- Per rendere i programmi più chiari si consiglia di inserire delle righe di commento che contengono dei testi illustrativi sui moduli del programma
 - La riga di commento viene preceduta
 automaticamente da un punto e virgola (;).

M. Strano, La programmazione, Lez. 8

3 modi di esecuzione di un programma

- ISTEP (Incremental Step, frase singola)
 - Il programma si arresta dopo ogni riga di programma
- MSTEP (Motion Step, passo di programma)
 - Il programma si arresta dopo ogni riga di movimento
- GO
 - Il programma si arresta solo alla fine se non ci sono istruzioni WAIT

Questa indicazione viene data in un file di configurazione del robot vale per tutti i programmi

M. Strano, La programmazione, Lez. 8

p.49

II linguaggio KUKA KRL

I files

- Struttura del programma *.src
 - DEF NAME()
 - Dichiarazioni
 - Sono lette dal robot tutte insieme all'inizio del programma
 - Si devono sempre trovare in testa al file
 - Istruzioni
 - Sono lette dinamicamente riga per riga
 - Sottoprogrammi
 - END
- 2 tipi di file
 - *.src (file programma vero e proprio)
 - *.dat (eventuale lista dati, contiene solo dichiarazioni)

M. Strano, La programmazione, Lez. 8

Possibili dichiarazioni

- INT, REAL, CHAR, BOOL
 - Intero, reale, carattere, booleano
- Strutture dati predefinite
 - POS
 - Posizione + correttori Status S e Turn T (posizione assiale univoca)
 - REAL X, Y, Z, A, B, C, INT S, T
 - FRAME
 - Sistema locale di riferimento
 - REAL X, Y, Z, A, B, C
 - AXIS
 - Set di valori per gli assi
 - REAL A1, A2, A3, A4, A5, A6

M. Strano, La programmazione, Lez. 8

0.51

Esempi di programma

Un programma molto semplice (1/2)

DEF PROG1()

;..... sezione delle dichiarazioni

INT J; dichiaraz. di integer per la variabile J

;..... sezione delle istruzioni

\$ VEL_AXIS[1]=100 ; determinazione velocità per asse

\$ VEL_AXIS[2]=100

. . .

\$ VEL_AXIS[6]=100

\$ ACC_AXIS[1]=100; determinazione accelerazioni per asse

\$ ACC_AXIS[2]=100

\$ ACC_AXIS[6]=100

M. Strano, La programmazione, Lez.

Un programma molto semplice (2/2)

;..... continua la sezione delle istruzioni PTP {A1 0, A2 -90, A3 90, A4 0, A5 0, A6 0}

FOR J=1 TO 5 PTP {A1 45} PTP {A2 -70, A3 50} PTP {A1 0, A2 -90, A3 90} ENDFOR

PTP_REL {A1 0, A2 -90, A3 90, A4 0, A5 0, A6 0}

; movimento incrementale

END

M. Strano, La programmazione, Lez. 8

p.53

Esempi di programma

Un programma più complesso (1/2)

DEF PROG2()

;..... sezione delle dichiarazioni ...

DECL AXIS HOME ; variabile HOME del tipo AXIS

DECL FRAME MYBASE[2] ; campo del tipo FRAME

;..... sezione dell'inizializzazione

;... inizial. veloc. e acceler.....

HOME= {AXIS: A1 0, A2 -90, A3 90, A4 0, A5 30, A6 0} \$BASE={X 1000, Y 0, Z 1000, A0, B0, C0}; sist. di coord. base REF_POS ={X 100, Y 0, Z0, A0, B0, C0}; posizione di riferimento MYBASE[2]={X0, Y200, Z250, A0, B90, C0}; sist. di coordinate locale

M. Strano, La programmazione, Lez. 8

Un programma più complesso (2/2)

;..... sezione delle istruzioni

PTP HOME; movimento fino a "casa" nel sistema di coordinate BASE

{A1 0, A2 -90, A3 90, A4 0, A5 0, A6 0}

PTP REF_POS ; movimento nel sistema BASE fino a REF_POS PTP MYBASE[2] ; movimento nel sistema BASE fino a MYBASE[2] PTP MYBASE[2]: REF_POS ; movimento, nel sistema MYBASE[2],

fino a REF_POS

M. Strano, La programmazione, Lez. 8

p.55

Esempi di programma

Un altro programma

DEF PROG3()

;..... sezione delle dichiarazioni

\$BASE = \$WORLD ; il sistema base è al piede del robot \$TOOL= \$NULLFRAME ; il TCP è al centro della flangia

EXT BAS(BAS_COMMAND :IN, REAL :IN) ; programma standard

esterno BAS.src

;..... sezione dell'inizializzazione

BAS(#INITMOV,0); ... inizial. veloc. e acceler.....

;..... sezione delle istruzioni

PTP {POS: X 1025, Y 0, Z 1480, A0, B90, C0, S 'B010', T 'B000010'};

M. Strano, La programmazione, Lez. 8