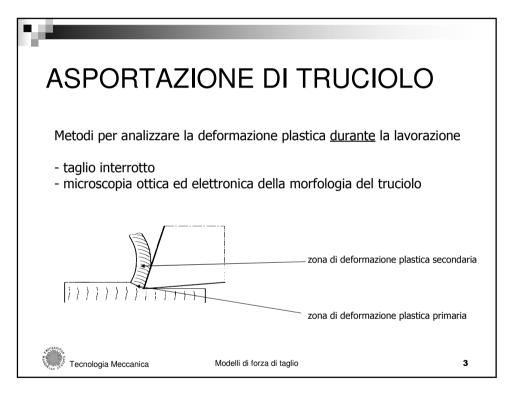
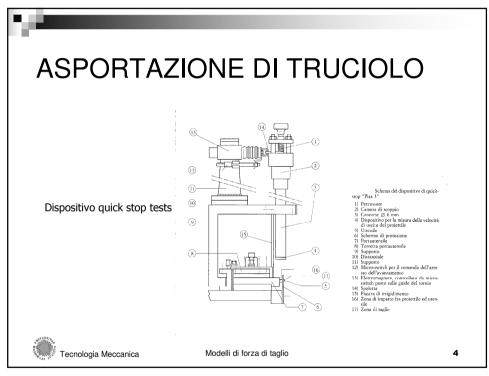
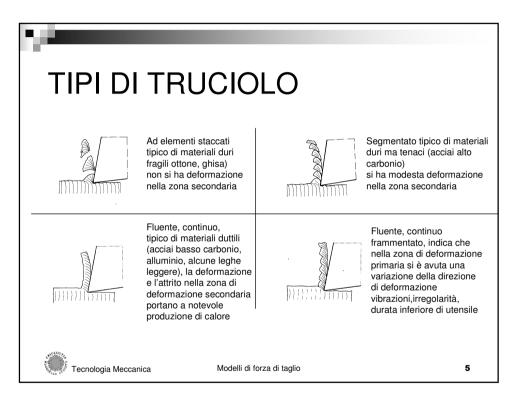
ASPORTAZIONE DI TRUCIOLO

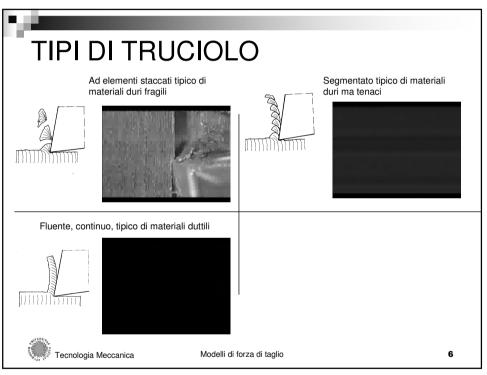
Distacco di alcune parti di materiale dal pezzo attraverso l'interazione con utensili che agiscono in maniera progressiva

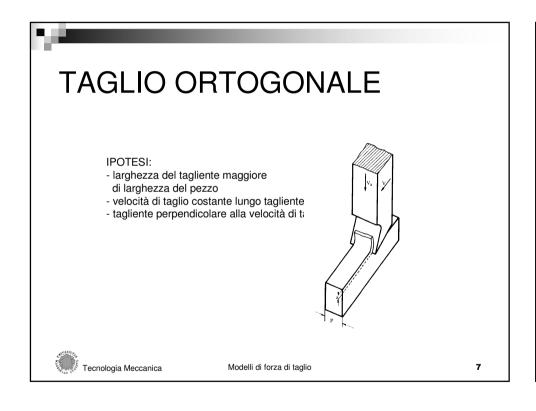
- cinematica del taglio
- meccanica del taglio
- parametri di lavorazione
- risultati delle lavorazione
- macchine e processi

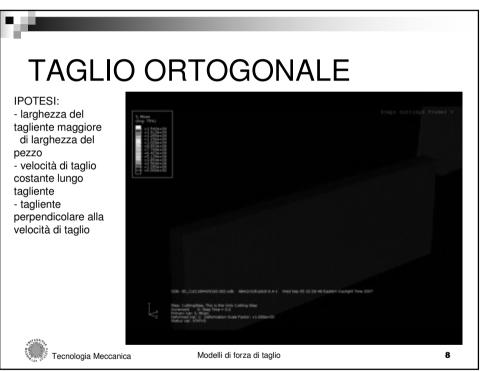


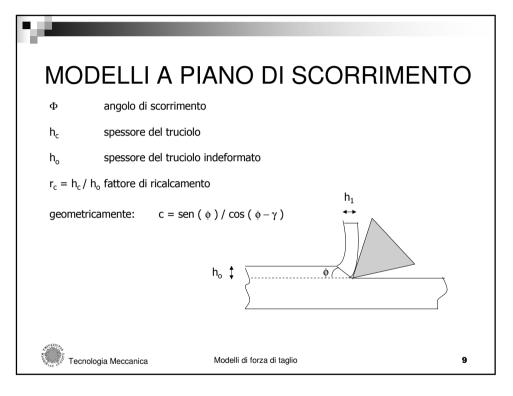

Modelli di forza di taglio

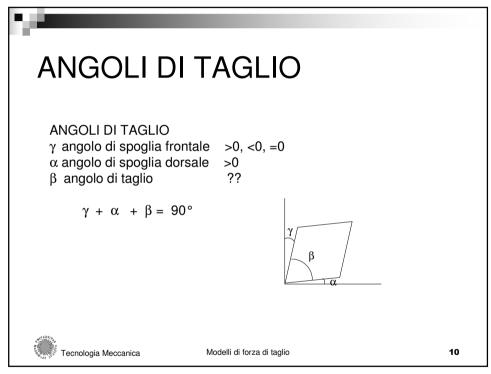

misure sperimentali mostrano che:
- produzione di calore
- spessore del truciolo h_c > h_o
- durezza del truciolo > durezza metallo base

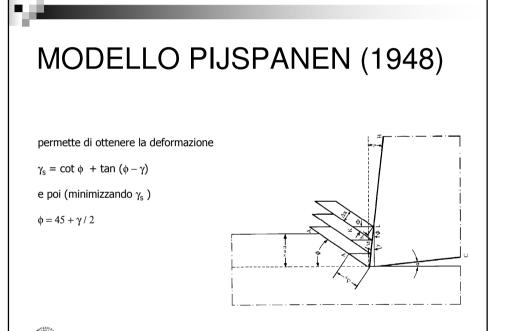

la formazione del truciolo avviene per deformazione plastica

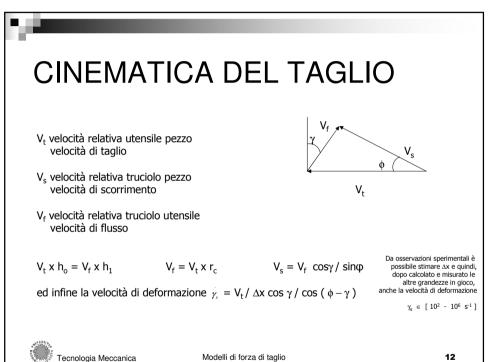

Modelli di forza di taglio









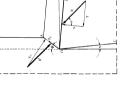


Modelli di forza di taglio

11

Tecnologia Meccanica

DINAMICA DEL TAGLIO

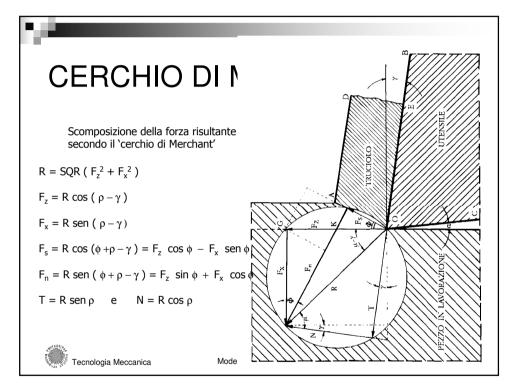

Il truciolo è in equilibrio sotto l'azione dell'utensile e la reazione del pezzo

la forza generica che si scambiano utensile e pezzo può essere scomposta lungo direzioni di interesse tecnologico:

- direzione velocità di taglio
- direzione perpendicolare
- direzione petto utensile
- direzione piano di scorrimento

potenza di taglio inflessione pezzo usura utensile

minima forza



scelta macchina e parametri tolleranza di lavorazione cambio utensili condizioni per il taglio

Tecnologia Meccanica

Modelli di forza di taglio

TEORIA DI ERNST & MERCHANT

Sul piano di scorrimento

$$\begin{split} &\tau_s = F_s \, / \, S_s \; = \; F_s \, / \, S \; \text{sen} \; \varphi = \frac{R \; \text{cos} \left(\; \varphi + \rho - \gamma \; \right) \, \text{sen} \; \varphi}{S} \\ e & S \\ e & G_s = F_n \, / \, S_s \; = \; F_n \, / \, S \; \text{sen} \; \varphi = \frac{R \; \text{sin} \left(\; \varphi + \rho - \gamma \; \right) \, \text{sen} \; \varphi}{S} \end{split}$$

Queste relazioni ci suggeriscono come e quando sia possibile avere deformazione plastica sul piano di scorrimento

Infatti, è possibile trovare un piano caratterizzato da un certo ϕ nel quale la τ_s sia massima ed, eventualmente, maggiore della resistenza alla deformazione del materiale.

La forza F_z che provoca scorrimento su quel piano è quindi la forza minima che può formare truciolo.

Il problema è quindi quello di trovare una espressione $F_z=f(\phi,\mu,\gamma)$, ricavare il valore di ϕ che rende minima la F

Tecnologia Meccanica

Modelli di forza di taglio

15

derivando rispetto a $\boldsymbol{\phi}$ ed uguagliando a zero:

$$\begin{array}{lll} dF_z & \cos \phi \, \cos \left(\,\phi + \rho - \gamma\,\right) - sen\,\phi \, \, sen\,\left(\phi + \rho \, - \gamma\,\,\right) \\ ---- & d\phi & sen^2\,\phi \, \, \cos^2\left(\phi + \mu - \gamma\,\right) \end{array} = \, 0$$

cioè cos (
$$\phi+\rho-\gamma$$
) - sen ϕ sen ($\phi+\rho-\gamma$) = cos ($\phi+\phi+\rho-\gamma$) = 0

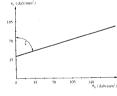
Tecnologia Meccanica

Modelli di forza di taglio

TEORIA DI ERNST & MERCHANT

Relazione di Ernst - Merchant

$$2 \phi + \rho - \gamma = \pi / 2$$


angolo di scorrimento: - diminuisce con l'aumentare dell'angolo di attrito

- aumenta con l'angolo di spoglia frontale

L'evidenza sperimentale mostra una certa differenza da tale relazione e allora Merchant, considerando anche la σ_{s} , secondo la $\tau_s = \tau_o + k \sigma_s$ ha proposto la

$$2 \phi + \rho - \gamma = \zeta$$

la determinazione sperimentale di ζ permette un migliore accordo

Tecnologia Meccanica

Modelli di forza di taglio

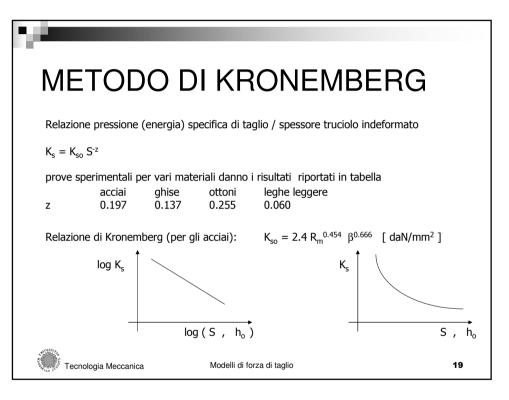
METODO DELLA PRESSIONE **SPECIFICA**

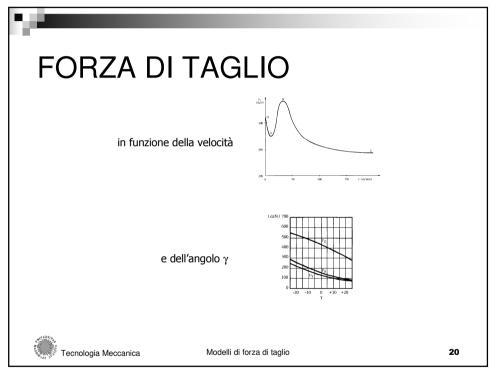
Metodo del K.

$$F_z = K_s S$$

- tiene conto di reale situazione tecnologica
- le approssimazioni sono più che accettabili e si evitano molti calcolo

Il metodo è prettamente tecnologico in quanto la determinazione del Ks viene fatta attraverso la misura delle forze di taglio nelle condizioni reali di lavoro


Determinazione del Ks sperimentale


- si scelgono alcune condizioni sperimentali spessore del truciolo velocità di taglio angolo γ
- si effettuano prove di taglio e si misura la Ft
- si calcola $K_s = F_t / A_o$

Tecnologia Meccanica

Modelli di forza di taglio

POTENZA

Potenza di taglio: - Velocità di taglio

- Forza di taglio $(P = V \times F)$

Potenza di avanzamento: - Velocità di avanzamento

- Forza di avanzamento

Potenza di repulsione:
- Velocità di repulsione
- Forza di repulsione

Dati noti: Vt, Ft, Va, Vr

 $P = Vt \times Ft + Va \times Fa$

21

inoltre: Fr = 15-25 % Ft Fa = 20-30% Ft

Tecnologia Meccanica Modelli di forza di taglio

-

PARAMETRI DI LAVORAZIONE

- angolo di spoglia frontale γ diminuisce Ft

truciolo fluente

migliora finitura superficiale

minori potenze minore usura utensile utensile meno robusto

sgrossatura max 6° finitura fino a 20° (alluminio)

- angolo di spoglia dorsale a evita strisciamento del dorso dell'utensile

evita danneggiamento superficie lavorata

deve essere - piccolo per non indebolire l'utensile

- grande per non causare strisciameno

- grande se E è piccolo (alluminio)

acciai 6-8° Al 10-12°

Tecnologia Meccanica Modelli di forza di taglio

FORZA DI TAGLIO

Ft serve principalmente per la determinazione della potenza di taglio

Fa influenza inflessione utensile, contribuisce (poco) alla potenza di taglio

Fr determina principalmente l'inflessione del pezzo e quindi le tolleranze di lavorazione non contribuisce alla potenza di taglio

Modelli di forza di taglio

PARAMETRI DI LAVORAZIONE

- Materiale da lavorare se ne tiene conto attraverso il Ks

- Materiale dell'utensile usura utensile

vita utile

finitura superficiale

- Lubrorefrigerazione calore sviluppato

vita utensile

finitura superficiale potenza di taglio

- Tipo di macchina utensile rigidezza

precisione

smorzamento vibrazioni

Tecnologia Meccanica Modelli di forza di taglio

LAVORABILITA'

attitudine del materiale ad essere lavorato per asportazione di truciolo (truciolabilità?)

criteri per valutare la lavorabilità di un materiale

finitura superficiale vita utensile forze e potenze

evacuazione del truciolo

Le prove per determinare la lavorabilità devono necessariamente essere di tipo tecnologico: usura utensile (microscopia), forze di taglio (dinamometri), finitura superficiale (rugosimetri) determinati nelle condizioni di lavoro, per certi set di parametri tecnologici

25

Tecnologia Meccanica

Modelli di forza di taglio

LAVORABILITA'

Dipende da varie caratteristiche

- del materiale - composizione chimica

- lavorazioni / trattamenti subiti in precedenza

incrudimento ricristallizzazione

trattamenti termici fasi

- caratteristiche strutturali

dimensioni dei grani orientazione dei grani

27

deformazione plastica

- della tecnologia / lavorazione sgrossatura / finitura

fresatura concorde / discorde

lubro-refrigerazione

- dell'utensile materiale

angoli di spoglia rompitruciolo

Tecnologia Meccanica

Modelli di forza di taglio

LAVORABILITA'

Acciai al piombo (particelle lubrificanti)

allo zolfo (particelle infragilizzanti) al calcio (particelle desossidanti)

al carbonio (vedi HB -> Ks)

inox - tenacità (austénitici)

- abrasività (martensitici)

Alluminio bassa HB

buona finitura superficiale

alta Vt

Magnesio basso Ks

Titanio bassa conducibilità termica / alto Ks

Ghise

fragili

truciolo corto abrasività cementite

Compositi sollecitazioni variabili

urti/usura/vibrazioni

Ottone truciolo corto

lunga durata utensili

Leghe Ni alta R ad alta temperatura

incrudimento / tenacità

Tecnologia Meccanica

Modelli di forza di taglio