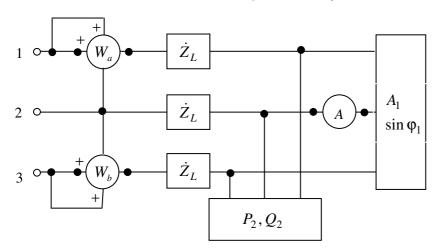


Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE

Modulo di Elettrotecnica

Seconda prova di esonero – 21/12/2009

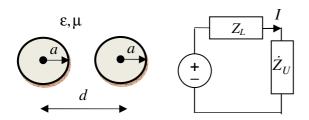

A

COGNOME E NOME _____

ESERCIZIO I

Nel seguente sistema trifase in regime sinusoidale la lettura dell'amperometro (A) è di 10 A.

- 1.1 Valutare alla sezione di ingresso 1-2-3 la tensione stellata e la corrente.
- 1.2 Valutare alla sezione di ingresso la lettura dei due wattmetri W_a e W_b .
- 1.3 Rifasare (se necessario) alla sezione di ingresso a $\cos \phi \ge 0.9$.


 $A_1 = 1 \text{ kVA}, \sin \varphi_1 = 0.7$ $P_2 = 2 \text{ kW}, Q_2 = 1.3 \text{ kVAr}$ A = 10 A, f = 50 Hz, $\dot{Z}_L = 20 + i30 \Omega.$

Riportare i risultati				
$I_{123} =$	$W_a =$	C =		
$E_{123} =$	$W_b =$			

ESERCIZIO II

Un carico \dot{Z}_U è collegato all'alimentazione tramite un cavo bifilare di rame di lunghezza l, come in figura.

- 2.1 Calcolare la capacità ed induttanza per unità di lunghezza.
- 2.2 Assumendo una corrente $I = 50\,A$, valutare la lunghezza massima l tale che la caduta di tensione industriale lungo la linea risulti $\Delta V \leq 10\,\mathrm{V}$.
- 2.3 Assumendo la corrente e la lunghezza massima di cui al punto precedente, valutare la forza magnetica tra le due correnti.

$$\varepsilon = \varepsilon_0 = 8.85 \cdot 10^{-12} \text{ F/m},$$

$$\mu = \mu_0 = 4\pi \cdot 10^{-7} \text{ H/m},$$

$$a = 1 \text{ mm}, d = 5a, f = 50 \text{ Hz},$$

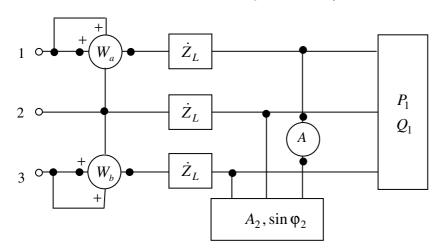
$$\dot{Z}_u = 50 + i50 \Omega, \eta = 1.7 \cdot 10^{-8} \Omega \text{m}.$$

Riportare i risultati					
L'=	C'=	$l_{\text{max}} =$	$F_x =$		

Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE

Modulo di Elettrotecnica

Seconda prova di esonero – 21/12/2009

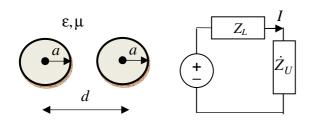

B

COGNOME E NOME _____

ESERCIZIO I

Nel seguente sistema trifase in regime sinusoidale la lettura dell'amperometro (A) è di 5 A.

- 1.1 Valutare alla sezione di ingresso 1-2-3 la tensione stellata e la corrente.
- 1.2 Valutare alla sezione di ingresso la lettura dei due wattmetri $\,W_a\,$ e $\,W_b\,$.
- 1.3 Rifasare (se necessario) alla sezione di ingresso a $\cos \phi \ge 0.9$.


 $P_1 = 2 \text{ kW}, Q_1 = 1.3 \text{ kVAr}$ $A_2 = 1 \text{ kVA}, \sin \varphi_2 = 0.7$ A = 5 A, f = 50 Hz, $\dot{Z}_L = 10 + i15 \Omega.$

Riportare i risultati				
$I_{123} =$	$W_a =$	C =		
$E_{123} =$	$W_b =$			

ESERCIZIO II

Un carico \dot{Z}_U è collegato all'alimentazione tramite un cavo bifilare di rame di lunghezza l, come in figura.

- 2.1 Calcolare la capacità ed induttanza per unità di lunghezza.
- 2.2 Assumendo una corrente $I=30\,A$, valutare la lunghezza massima l tale che la caduta di tensione industriale lungo la linea risulti $\Delta V \leq 15\,\mathrm{V}$.
- 2.3 Assumendo la corrente e la lunghezza massima di cui al punto precedente, valutare la forza magnetica tra le due correnti.

$$\varepsilon = \varepsilon_0 = 8.85 \cdot 10^{-12} \,\text{F/m},$$

$$\mu = \mu_0 = 4\pi \cdot 10^{-7} \,\text{H/m},$$

$$a = 1.5 \,\text{mm}, \ d = 7a, \ f = 50 \,\text{Hz},$$

$$\dot{Z}_u = 70 + i20 \,\Omega, \ \eta = 1.7 \cdot 10^{-8} \,\Omega \text{m}.$$

Riportare i risultati					
L'=	C'=	$l_{\text{max}} =$	$F_x =$		