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OIML Foreword 
 
The International Organization of Legal Metrology (OIML) is a worldwide, intergovernmental organization 
whose primary aim is to harmonize the regulations and metrological controls applied by the national 
metrological services, or related organizations, of its Member States. The main categories of OIML 
publications are: 

• International Recommendations (OIML R), which are model regulations that establish the 
metrological characteristics, required of certain measuring instruments and which specify methods 
and equipment for checking their conformity. OIML Member States shall implement these 
Recommendations to the greatest possible extent; 

• International Documents (OIML D), which are informative in nature and which are intended to 
harmonize and improve work in the field of legal metrology; 

• International Guides (OIML G), which are also informative in nature and which are intended to 
give guidelines for the application of certain requirements to legal metrology; and 

• International Basic Publications (OIML B), which define the operating rules of the various OIML 
structures and systems. 

OIML Draft Recommendations, Documents and Guides are developed by Technical Committees or 
Subcommittees which comprise representatives from the Member States. Certain international and regional 
institutions also participate on a consultation basis. Cooperative agreements have been established between 
the OIML and certain institutions, such as ISO and the IEC, with the objective of avoiding contradictory 
requirements. Consequently, manufacturers and users of measuring instruments, test laboratories, etc. may 
simultaneously apply OIML publications and those of other institutions. 
International Recommendations, Documents, Guides and Basic Publications are published in English (E) and 
translated into French (F) and are subject to periodic revision. 
Additionally, the OIML publishes or participates in the publication of Vocabularies (OIML V) and 
periodically commissions legal metrology experts to write Expert Reports (OIML E). Expert Reports are 
intended to provide information and advice, and are written solely from the viewpoint of their author, 
without the involvement of a Technical Committee or Subcommittee, nor that of the CIML. Thus, they do 
not necessarily represent the views of the OIML. 
This publication – reference OIML G 1-100:2008 (E), contains a reproduction of document JCGM 100:2008 
that was developed by the Joint Committee for Guides in Metrology (JCGM), in which the OIML 
participates and is published as an OIML Guide following the terms of the JCGM Charter. 
OIML Publications may be downloaded from the OIML web site in the form of PDF files. Additional 
information on OIML Publications may be obtained from the Organization’s headquarters: 
Bureau International de Métrologie Légale 
11, rue Turgot - 75009 Paris - France 
Telephone:  33 (0)1 48 78 12 82 
Fax:  33 (0)1 42 82 17 27 
E-mail:  biml@oiml.org 
Internet:  www.oiml.org 
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Notice 
 
The Guide to the expression of uncertainty in measurement (GUM) was prepared by a joint working group 
consisting of experts nominated by the Bureau International des Poids et Mesures (BIPM), the Internationbal 
Organization for Standardization (ISO), the International Electrotechnical Commission (IEC) and the OIML 
and  was originally published by ISO in 1993 (reprinted in 1995). This 2008 edition of the GUM is the first 
edition published under the Charter of the Joint Committee on Guides in Metrology (JCGM)1 and is the 1995 
version of the GUM with minor corrections. 
 
To date, the OIML has also published the following JCGM documents: 
 
OIML G 1 - 101:2008 Evaluation of measurement data − Supplement 1 to the “Guide to the expression of 

uncertainty in measurement − Propagation of distributions using a Monte Carlo 
method – (JCGM 101:2008) 

 
OIML V 2 - 200:2007 International Vocabulary of Metrology – Basic and General Concepts and 

Associated Terms (VIM). 3rd Edition (Bilingual E/F) – (JCGM 200:2008) 
 

                                                      
1 See: http://www.bipm.org/utils/en/pdf/JCGM_charter.pdf  
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Copyright of this JCGM guidance document is shared jointly by the JCGM member organizations (BIPM, IEC, 
IFCC, ILAC, ISO, IUPAC, IUPAP and OIML). 

Copyright 

Even if electronic versions are available free of charge on the website of one or more of the JCGM member 
organizations, economic and moral copyrights related to all JCGM publications are internationally protected. 
The JCGM does not, without its written authorisation, permit third parties to rewrite or re-brand issues, to sell 
copies to the public, or to broadcast or use on-line its publications. Equally, the JCGM also objects to 
distortion, augmentation or mutilation of its publications, including its titles, slogans and logos, and those of its 
member organizations. 

Official versions and translations 

The only official versions of documents are those published by the JCGM, in their original languages. 

The JCGM’s publications may be translated into languages other than those in which the documents were 
originally published by the JCGM. Permission must be obtained from the JCGM before a translation can be 
made. All translations should respect the original and official format of the formulae and units (without any 
conversion to other formulae or units), and contain the following statement (to be translated into the chosen 
language): 

All JCGM’s products are internationally protected by copyright. This translation of the original JCGM 
document has been produced with the permission of the JCGM. The JCGM retains full internationally 
protected copyright on the design and content of this document and on the JCGM’s titles, slogan and 
logos. The member organizations of the JCGM also retain full internationally protected right on their titles, 
slogans and logos included in the JCGM’s publications. The only official version is the document 
published by the JCGM, in the original languages. 

The JCGM does not accept any liability for the relevance, accuracy, completeness or quality of the information 
and materials offered in any translation. A copy of the translation shall be provided to the JCGM at the time of 
publication. 

Reproduction 

The JCGM’s publications may be reproduced, provided written permission has been granted by the JCGM. A 
sample of any reproduced document shall be provided to the JCGM at the time of reproduction and contain 
the following statement: 

This document is reproduced with the permission of the JCGM, which retains full internationally protected 
copyright on the design and content of this document and on the JCGM’s titles, slogans and logos. The 
member organizations of the JCGM also retain full internationally protected right on their titles, slogans 
and logos included in the JCGM’s publications. The only official versions are the original versions of the 
documents published by the JCGM. 

Disclaimer 

The JCGM and its member organizations have published this document to enhance access to information 
about metrology. They endeavor to update it on a regular basis, but cannot guarantee the accuracy at all 
times and shall not be responsible for any direct or indirect damage that may result from its use. Any 
reference to commercial products of any kind (including but not restricted to any software, data or hardware) 
or links to websites, over which the JCGM and its member organizations have no control and for which they 
assume no responsibility, does not imply any approval, endorsement or recommendation by the JCGM and its 
member organizations. 
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This Guide establishes general rules for evaluating and expressing uncertainty in measurement that are 
intended to be applicable to a broad spectrum of measurements. The basis of the Guide is 
Recommendation 1 (CI-1981) of the Comité International des Poids et Mesures (CIPM) and Recommendation 
INC-1 (1980) of the Working Group on the Statement of Uncertainties. The Working Group was convened by 
the Bureau International des Poids et Mesures (BIPM) in response to a request of the CIPM. The ClPM 
Recommendation is the only recommendation concerning the expression of uncertainty in measurement 
adopted by an intergovernmental organization. 

This Guide was prepared by a joint working group consisting of experts nominated by the BIPM, the 
International Electrotechnical Commission (IEC), the International Organization for Standardization (ISO), and 
the International Organization of Legal Metrology (OIML). 

The following seven organizations* supported the development of this Guide, which is published in their name: 

BIPM: Bureau International des Poids et Mesures 

IEC: International Electrotechnical Commission 

IFCC: International Federation of Clinical Chemistry** 

ISO: International Organization for Standardization 

IUPAC: International Union of Pure and Applied Chemistry** 

IUPAP: International Union of Pure and Applied Physics** 

OlML: International Organization of Legal Metrology 

Users of this Guide are invited to send their comments and requests for clarification to any of the seven 
supporting organizations, the mailing addresses of which are given on the inside front cover***. 

____________________________  

* Footnote to the 2008 version: 
In 2005, the International Laboratory Accreditation Cooperation (ILAC) officially joined the seven founding international 
organizations. 

** Footnote to the 2008 version: 
The names of these three organizations have changed since 1995. They are now: 
IFCC: International Federation for Clinical Chemistry and Laboratory Medicine 
IUPAC: International Organization for Pure and Applied Chemistry 
IUPAP: International Organization for Pure and Applied Physics. 

*** Footnote to the 2008 version: 
Links to the addresses of the eight organizations presently involved in the JCGM (Joint Committee for Guides in Metrology) 
are given on http://www.bipm.org/en/committees/jc/jcgm. 

http://www.bipm.org/en/committees/jc/jcgm
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Foreword 

In 1977, recognizing the lack of international consensus on the expression of uncertainty in measurement, the 
world's highest authority in metrology, the Comité International des Poids et Mesures (CIPM), requested the 
Bureau International des Poids et Mesures (BIPM) to address the problem in conjunction with the national 
standards laboratories and to make a recommendation. 

The BIPM prepared a detailed questionnaire covering the issues involved and distributed it to 32 national 
metrology laboratories known to have an interest in the subject (and, for information, to five international 
organizations). By early 1979 responses were received from 21 laboratories [1].1) Almost all believed that it 
was important to arrive at an internationally accepted procedure for expressing measurement uncertainty and 
for combining individual uncertainty components into a single total uncertainty. However, a consensus was not 
apparent on the method to be used. The BIPM then convened a meeting for the purpose of arriving at a 
uniform and generally acceptable procedure for the specification of uncertainty; it was attended by experts 
from 11 national standards laboratories. This Working Group on the Statement of Uncertainties developed 
Recommendation INC-1 (1980), Expression of Experimental Uncertainties [2]. The CIPM approved the 
Recommendation in 1981 [3] and reaffirmed it in 1986 [4]. 

The task of developing a detailed guide based on the Working Group Recommendation (which is a brief 
outline rather than a detailed prescription) was referred by the CIPM to the International Organization for 
Standardization (ISO), since ISO could better reflect the needs arising from the broad interests of industry and 
commerce. 

Responsibility was assigned to the ISO Technical Advisory Group on Metrology (TAG 4) because one of its 
tasks is to coordinate the development of guidelines on measurement topics that are of common interest to 
ISO and the six organizations that participate with ISO in the work of TAG 4: the International Electrotechnical 
Commission (IEC), the partner of ISO in worldwide standardization; the CIPM and the International 
Organization of Legal Metrology (OIML), the two worldwide metrology organizations; the International Union of 
Pure and Applied Chemistry (IUPAC) and the International Union of Pure and Applied Physics (IUPAP), the 
two international unions that represent chemistry and physics; and the International Federation of Clinical 
Chemistry (IFCC). 

TAG 4 in turn established Working Group 3 (ISO/TAG 4/WG 3) composed of experts nominated by the BIPM, 
IEC, ISO, and OIML and appointed by the Chairman of TAG 4. It was assigned the following terms of 
reference: 

To develop a guidance document based upon the recommendation of the BIPM Working Group on the 
Statement of Uncertainties which provides rules on the expression of measurement uncertainty for use 
within standardization, calibration, laboratory accreditation, and metrology services; 

The purpose of such guidance is 

⎯ to promote full information on how uncertainty statements are arrived at; 

⎯ to provide a basis for the international comparison of measurement results. 

                                                      

1) See the Bibliography. 

* Footnote to the 2008 version: 
In producing this 2008 version of the GUM, necessary corrections only to the printed 1995 version have been introduced 
by JCGM/WG 1. These corrections occur in subclauses 4.2.2, 4.2.4, 5.1.2, B.2.17, C.3.2, C.3.4, E.4.3, H.4.3, H.5.2.5 and 
H.6.2. 
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0 Introduction 

0.1 When reporting the result of a measurement of a physical quantity, it is obligatory that some quantitative 
indication of the quality of the result be given so that those who use it can assess its reliability. Without such 
an indication, measurement results cannot be compared, either among themselves or with reference values 
given in a specification or standard. It is therefore necessary that there be a readily implemented, easily 
understood, and generally accepted procedure for characterizing the quality of a result of a measurement, that 
is, for evaluating and expressing its uncertainty. 

0.2 The concept of uncertainty as a quantifiable attribute is relatively new in the history of measurement, 
although error and error analysis have long been a part of the practice of measurement science or metrology. 
It is now widely recognized that, when all of the known or suspected components of error have been 
evaluated and the appropriate corrections have been applied, there still remains an uncertainty about the 
correctness of the stated result, that is, a doubt about how well the result of the measurement represents the 
value of the quantity being measured. 

0.3 Just as the nearly universal use of the International System of Units (SI) has brought coherence to all 
scientific and technological measurements, a worldwide consensus on the evaluation and expression of 
uncertainty in measurement would permit the significance of a vast spectrum of measurement results in 
science, engineering, commerce, industry, and regulation to be readily understood and properly interpreted. In 
this era of the global marketplace, it is imperative that the method for evaluating and expressing uncertainty 
be uniform throughout the world so that measurements performed in different countries can be easily 
compared. 

0.4 The ideal method for evaluating and expressing the uncertainty of the result of a measurement should 
be: 

⎯ universal: the method should be applicable to all kinds of measurements and to all types of input data 
used in measurements. 

The actual quantity used to express uncertainty should be: 

⎯ internally consistent: it should be directly derivable from the components that contribute to it, as well as 
independent of how these components are grouped and of the decomposition of the components into 
subcomponents; 

⎯ transferable: it should be possible to use directly the uncertainty evaluated for one result as a component 
in evaluating the uncertainty of another measurement in which the first result is used. 

Further, in many industrial and commercial applications, as well as in the areas of health and safety, it is often 
necessary to provide an interval about the measurement result that may be expected to encompass a large 
fraction of the distribution of values that could reasonably be attributed to the quantity subject to measurement. 
Thus the ideal method for evaluating and expressing uncertainty in measurement should be capable of readily 
providing such an interval, in particular, one with a coverage probability or level of confidence that 
corresponds in a realistic way with that required. 

0.5 The approach upon which this guidance document is based is that outlined in Recommendation 
INC-1 (1980) [2] of the Working Group on the Statement of Uncertainties, which was convened by the BIPM in 
response to a request of the CIPM (see Foreword). This approach, the justification of which is discussed  
in Annex E, meets all of the requirements outlined above. This is not the case for most other methods  
in current use. Recommendation INC-1 (1980) was approved and reaffirmed by the CIPM in its own 
Recommendations 1 (CI-1981) [3] and 1 (CI-1986) [4]; the English translations of these CIPM Recommendations 
are reproduced in Annex A (see A.2 and A.3, respectively). Because Recommendation INC-1 (1980) is the 
foundation upon which this document rests, the English translation is reproduced in 0.7 and the French text, 
which is authoritative, is reproduced in A.1. 
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0.6 A succinct summary of the procedure specified in this guidance document for evaluating and 
expressing uncertainty in measurement is given in Clause 8 and a number of examples are presented in detail 
in Annex H. Other annexes deal with general terms in metrology (Annex B); basic statistical terms and 
concepts (Annex C); “true” value, error, and uncertainty (Annex D); practical suggestions for evaluating 
uncertainty components (Annex F); degrees of freedom and levels of confidence (Annex G); the principal 
mathematical symbols used throughout the document (Annex J); and bibliographical references (Bibliography). 
An alphabetical index concludes the document. 

0.7 Recommendation INC-1 (1980) Expression of experimental uncertainties 

1) The uncertainty in the result of a measurement generally consists of several components which may 
be grouped into two categories according to the way in which their numerical value is estimated: 

A. those which are evaluated by statistical methods, 

B. those which are evaluated by other means. 

There is not always a simple correspondence between the classification into categories A or B and 
the previously used classification into “random” and “systematic” uncertainties. The term “systematic 
uncertainty” can be misleading and should be avoided. 

Any detailed report of the uncertainty should consist of a complete list of the components, specifying 
for each the method used to obtain its numerical value. 

2) The components in category A are characterized by the estimated variances 2
is , (or the estimated 

“standard deviations” si ) and the number of degrees of freedom vi . Where appropriate, the 
covariances should be given. 

3) The components in category B should be characterized by quantities 2
ju , which may be considered 

as approximations to the corresponding variances, the existence of which is assumed. The quantities 
2
ju  may be treated like variances and the quantities uj like standard deviations. Where appropriate, 

the covariances should be treated in a similar way. 

4) The combined uncertainty should be characterized by the numerical value obtained by applying the 
usual method for the combination of variances. The combined uncertainty and its components should 
be expressed in the form of “standard deviations”. 

5) If, for particular applications, it is necessary to multiply the combined uncertainty by a factor to obtain 
an overall uncertainty, the multiplying factor used must always be stated. 
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Evaluation of measurement data — Guide to the expression of 
uncertainty in measurement 

1 Scope 

1.1 This Guide establishes general rules for evaluating and expressing uncertainty in measurement that 
can be followed at various levels of accuracy and in many fields — from the shop floor to fundamental 
research. Therefore, the principles of this Guide are intended to be applicable to a broad spectrum of 
measurements, including those required for: 

⎯ maintaining quality control and quality assurance in production; 

⎯ complying with and enforcing laws and regulations; 

⎯ conducting basic research, and applied research and development, in science and engineering; 

⎯ calibrating standards and instruments and performing tests throughout a national measurement system in 
order to achieve traceability to national standards; 

⎯ developing, maintaining, and comparing international and national physical reference standards, including 
reference materials. 

1.2 This Guide is primarily concerned with the expression of uncertainty in the measurement of a 
well-defined physical quantity — the measurand — that can be characterized by an essentially unique value. If 
the phenomenon of interest can be represented only as a distribution of values or is dependent on one or 
more parameters, such as time, then the measurands required for its description are the set of quantities 
describing that distribution or that dependence. 

1.3 This Guide is also applicable to evaluating and expressing the uncertainty associated with the 
conceptual design and theoretical analysis of experiments, methods of measurement, and complex 
components and systems. Because a measurement result and its uncertainty may be conceptual and based 
entirely on hypothetical data, the term “result of a measurement” as used in this Guide should be interpreted in 
this broader context. 

1.4 This Guide provides general rules for evaluating and expressing uncertainty in measurement rather 
than detailed, technology-specific instructions. Further, it does not discuss how the uncertainty of a particular 
measurement result, once evaluated, may be used for different purposes, for example, to draw conclusions 
about the compatibility of that result with other similar results, to establish tolerance limits in a manufacturing 
process, or to decide if a certain course of action may be safely undertaken. It may therefore be necessary to 
develop particular standards based on this Guide that deal with the problems peculiar to specific fields of 
measurement or with the various uses of quantitative expressions of uncertainty.* These standards may be 
simplified versions of this Guide but should include the detail that is appropriate to the level of accuracy and 
complexity of the measurements and uses addressed. 

NOTE There may be situations in which the concept of uncertainty of measurement is believed not to be fully 
applicable, such as when the precision of a test method is determined (see Reference [5], for example). 

____________________________  

* Footnote to the 2008 version: 
Since the initial publication of this Guide, several general and specific applications documents derived from this document 
have been published. For information purposes, nonexhaustive compilations of these documents can be found on 
http://www.bipm.org/en/committees/jc/jcgm/wg1_bibliography.html. 

http://www.bipm.org/en/committees/jc/jcgm/wg1_bibliography.html
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2 Definitions 

2.1 General metrological terms 

The definition of a number of general metrological terms relevant to this Guide, such as “measurable quantity”, 
“measurand”, and “error of measurement”, are given in Annex B. These definitions are taken from the 
International vocabulary of basic and general terms in metrology (abbreviated VIM)* [6]. In addition, Annex C 
gives the definitions of a number of basic statistical terms taken mainly from International Standard 
ISO 3534-1 [7]. When one of these metrological or statistical terms (or a closely related term) is first used in 
the text, starting with Clause 3, it is printed in boldface and the number of the subclause in which it is defined 
is given in parentheses. 

Because of its importance to this Guide, the definition of the general metrological term “uncertainty of 
measurement” is given both in Annex B and 2.2.3. The definitions of the most important terms specific to this 
Guide are given in 2.3.1 to 2.3.6. In all of these subclauses and in Annexes B and C, the use of parentheses 
around certain words of some terms means that these words may be omitted if this is unlikely to cause 
confusion. 

2.2 The term “uncertainty” 

The concept of uncertainty is discussed further in Clause 3 and Annex D. 

2.2.1 The word “uncertainty” means doubt, and thus in its broadest sense “uncertainty of measurement” 
means doubt about the validity of the result of a measurement. Because of the lack of different words for this 
general concept of uncertainty and the specific quantities that provide quantitative measures of the concept, 
for example, the standard deviation, it is necessary to use the word “uncertainty” in these two different senses. 

2.2.2 In this Guide, the word “uncertainty” without adjectives refers both to the general concept of 
uncertainty and to any or all quantitative measures of that concept. When a specific measure is intended, 
appropriate adjectives are used. 

2.2.3 The formal definition of the term “uncertainty of measurement” developed for use in this Guide and in 
the VIM [6] (VIM:1993, definition 3.9) is as follows: 

uncertainty (of measurement) 
parameter, associated with the result of a measurement, that characterizes the dispersion of the values that 
could reasonably be attributed to the measurand 

NOTE 1 The parameter may be, for example, a standard deviation (or a given multiple of it), or the half-width of an 
interval having a stated level of confidence. 

NOTE 2 Uncertainty of measurement comprises, in general, many components. Some of these components may be 
evaluated from the statistical distribution of the results of series of measurements and can be characterized by 
experimental standard deviations. The other components, which also can be characterized by standard deviations, are 
evaluated from assumed probability distributions based on experience or other information. 

NOTE 3 It is understood that the result of the measurement is the best estimate of the value of the measurand, and 
that all components of uncertainty, including those arising from systematic effects, such as components associated with 
corrections and reference standards, contribute to the dispersion. 

2.2.4 The definition of uncertainty of measurement given in 2.2.3 is an operational one that focuses on the 
measurement result and its evaluated uncertainty. However, it is not inconsistent with other concepts of 
uncertainty of measurement, such as 

_____________________________ 

* Footnote to the 2008 version: 
The third edition of the vocabulary was published in 2008, under the title JCGM 200:2008, International vocabulary of 
metrology — Basic and general concepts and associated terms (VIM). 
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⎯ a measure of the possible error in the estimated value of the measurand as provided by the result of a 
measurement; 

⎯ an estimate characterizing the range of values within which the true value of a measurand lies (VIM:1984, 
definition 3.09). 

Although these two traditional concepts are valid as ideals, they focus on unknowable quantities: the “error” of 
the result of a measurement and the “true value” of the measurand (in contrast to its estimated value), 
respectively. Nevertheless, whichever concept of uncertainty is adopted, an uncertainty component is always 
evaluated using the same data and related information. (See also E.5.) 

2.3 Terms specific to this Guide 

In general, terms that are specific to this Guide are defined in the text when first introduced. However, the 
definitions of the most important of these terms are given here for easy reference. 

NOTE Further discussion related to these terms may be found as follows: for 2.3.2, see 3.3.3 and 4.2; for 2.3.3, see 
3.3.3 and 4.3; for 2.3.4, see Clause 5 and Equations (10) and (13); and for 2.3.5 and 2.3.6, see Clause 6. 

2.3.1 
standard uncertainty 
uncertainty of the result of a measurement expressed as a standard deviation 

2.3.2 
Type A evaluation (of uncertainty) 
method of evaluation of uncertainty by the statistical analysis of series of observations 

2.3.3 
Type B evaluation (of uncertainty) 
method of evaluation of uncertainty by means other than the statistical analysis of series of observations 

2.3.4 
combined standard uncertainty 
standard uncertainty of the result of a measurement when that result is obtained from the values of a number 
of other quantities, equal to the positive square root of a sum of terms, the terms being the variances or 
covariances of these other quantities weighted according to how the measurement result varies with changes 
in these quantities 

2.3.5 
expanded uncertainty 
quantity defining an interval about the result of a measurement that may be expected to encompass a large 
fraction of the distribution of values that could reasonably be attributed to the measurand 

NOTE 1 The fraction may be viewed as the coverage probability or level of confidence of the interval. 

NOTE 2 To associate a specific level of confidence with the interval defined by the expanded uncertainty requires 
explicit or implicit assumptions regarding the probability distribution characterized by the measurement result and its 
combined standard uncertainty. The level of confidence that may be attributed to this interval can be known only to the 
extent to which such assumptions may be justified. 

NOTE 3 Expanded uncertainty is termed overall uncertainty in paragraph 5 of Recommendation INC-1 (1980). 

2.3.6 
coverage factor 
numerical factor used as a multiplier of the combined standard uncertainty in order to obtain an expanded 
uncertainty 

NOTE A coverage factor, k, is typically in the range 2 to 3. 
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3 Basic concepts 

Additional discussion of basic concepts may be found in Annex D, which focuses on the ideas of “true” value, 
error and uncertainty and includes graphical illustrations of these concepts; and in Annex E, which explores 
the motivation and statistical basis for Recommendation INC-1 (1980) upon which this Guide rests. Annex J is 
a glossary of the principal mathematical symbols used throughout the Guide. 

3.1 Measurement 

3.1.1 The objective of a measurement (B.2.5) is to determine the value (B.2.2) of the measurand (B.2.9), 
that is, the value of the particular quantity (B.2.1, Note 1) to be measured. A measurement therefore begins 
with an appropriate specification of the measurand, the method of measurement (B.2.7), and the 
measurement procedure (B.2.8). 

NOTE The term “true value” (see Annex D) is not used in this Guide for the reasons given in D.3.5; the terms “value 
of a measurand” (or of a quantity) and “true value of a measurand” (or of a quantity) are viewed as equivalent. 

3.1.2 In general, the result of a measurement (B.2.11) is only an approximation or estimate (C.2.26) of 
the value of the measurand and thus is complete only when accompanied by a statement of the uncertainty 
(B.2.18) of that estimate. 

3.1.3 In practice, the required specification or definition of the measurand is dictated by the required 
accuracy of measurement (B.2.14). The measurand should be defined with sufficient completeness with 
respect to the required accuracy so that for all practical purposes associated with the measurement its value 
is unique. It is in this sense that the expression “value of the measurand” is used in this Guide. 

EXAMPLE If the length of a nominally one-metre long steel bar is to be determined to micrometre accuracy, its 
specification should include the temperature and pressure at which the length is defined. Thus the measurand should be 
specified as, for example, the length of the bar at 25,00 °C* and 101 325 Pa (plus any other defining parameters deemed 
necessary, such as the way the bar is to be supported). However, if the length is to be determined to only millimetre 
accuracy, its specification would not require a defining temperature or pressure or a value for any other defining parameter. 

NOTE Incomplete definition of the measurand can give rise to a component of uncertainty sufficiently large that it 
must be included in the evaluation of the uncertainty of the measurement result (see D.1.1, D.3.4, and D.6.2). 

3.1.4 In many cases, the result of a measurement is determined on the basis of series of observations 
obtained under repeatability conditions (B.2.15, Note 1). 

3.1.5 Variations in repeated observations are assumed to arise because influence quantities (B.2.10) that 
can affect the measurement result are not held completely constant. 

3.1.6 The mathematical model of the measurement that transforms the set of repeated observations into 
the measurement result is of critical importance because, in addition to the observations, it generally includes 
various influence quantities that are inexactly known. This lack of knowledge contributes to the uncertainty of 
the measurement result, as do the variations of the repeated observations and any uncertainty associated 
with the mathematical model itself. 

3.1.7 This Guide treats the measurand as a scalar (a single quantity). Extension to a set of related 
measurands determined simultaneously in the same measurement requires replacing the scalar measurand 
and its variance (C.2.11, C.2.20, C.3.2) by a vector measurand and covariance matrix (C.3.5). Such a 
replacement is considered in this Guide only in the examples (see H.2, H.3, and H.4). 

_____________________________ 

* Footnote to the 2008 version: 
According to Resolution 10 of the 22nd CGPM (2003) “... the symbol for the decimal marker shall be either the point on the 
line or the comma on the line...”. The JCGM has decided to adopt, in its documents in English, the point on the line. 
However, in this document, the decimal comma has been retained for consistency with the 1995 printed version. 
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3.2 Errors, effects, and corrections 

3.2.1 In general, a measurement has imperfections that give rise to an error (B.2.19) in the measurement 
result. Traditionally, an error is viewed as having two components, namely, a random (B.2.21) component 
and a systematic (B.2.22) component. 

NOTE Error is an idealized concept and errors cannot be known exactly. 

3.2.2 Random error presumably arises from unpredictable or stochastic temporal and spatial variations of 
influence quantities. The effects of such variations, hereafter termed random effects, give rise to variations in 
repeated observations of the measurand. Although it is not possible to compensate for the random error of a 
measurement result, it can usually be reduced by increasing the number of observations; its expectation or 
expected value (C.2.9, C.3.1) is zero. 

NOTE 1 The experimental standard deviation of the arithmetic mean or average of a series of observations (see 4.2.3) 
is not the random error of the mean, although it is so designated in some publications. It is instead a measure of the 
uncertainty of the mean due to random effects. The exact value of the error in the mean arising from these effects cannot 
be known. 

NOTE 2 In this Guide, great care is taken to distinguish between the terms “error” and “uncertainty”. They are not 
synonyms, but represent completely different concepts; they should not be confused with one another or misused. 

3.2.3 Systematic error, like random error, cannot be eliminated but it too can often be reduced. If a 
systematic error arises from a recognized effect of an influence quantity on a measurement result, hereafter 
termed a systematic effect, the effect can be quantified and, if it is significant in size relative to the required 
accuracy of the measurement, a correction (B.2.23) or correction factor (B.2.24) can be applied to 
compensate for the effect. It is assumed that, after correction, the expectation or expected value of the error 
arising from a systematic effect is zero. 

NOTE The uncertainty of a correction applied to a measurement result to compensate for a systematic effect is not 
the systematic error, often termed bias, in the measurement result due to the effect as it is sometimes called. It is instead 
a measure of the uncertainty of the result due to incomplete knowledge of the required value of the correction. The error 
arising from imperfect compensation of a systematic effect cannot be exactly known. The terms “error” and “uncertainty” 
should be used properly and care taken to distinguish between them. 

3.2.4 It is assumed that the result of a measurement has been corrected for all recognized significant 
systematic effects and that every effort has been made to identify such effects. 

EXAMPLE A correction due to the finite impedance of a voltmeter used to determine the potential difference (the 
measurand) across a high-impedance resistor is applied to reduce the systematic effect on the result of the measurement 
arising from the loading effect of the voltmeter. However, the values of the impedances of the voltmeter and resistor, which 
are used to estimate the value of the correction and which are obtained from other measurements, are themselves 
uncertain. These uncertainties are used to evaluate the component of the uncertainty of the potential difference 
determination arising from the correction and thus from the systematic effect due to the finite impedance of the voltmeter. 

NOTE 1 Often, measuring instruments and systems are adjusted or calibrated using measurement standards and 
reference materials to eliminate systematic effects; however, the uncertainties associated with these standards and 
materials must still be taken into account. 

NOTE 2 The case where a correction for a known significant systematic effect is not applied is discussed in the Note to 
6.3.1 and in F.2.4.5. 

3.3 Uncertainty 

3.3.1 The uncertainty of the result of a measurement reflects the lack of exact knowledge of the value of the 
measurand (see 2.2). The result of a measurement after correction for recognized systematic effects is still 
only an estimate of the value of the measurand because of the uncertainty arising from random effects and 
from imperfect correction of the result for systematic effects. 
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NOTE The result of a measurement (after correction) can unknowably be very close to the value of the measurand 
(and hence have a negligible error) even though it may have a large uncertainty. Thus the uncertainty of the result of a 
measurement should not be confused with the remaining unknown error. 

3.3.2 In practice, there are many possible sources of uncertainty in a measurement, including: 

a) incomplete definition of the measurand; 

b) imperfect reaIization of the definition of the measurand; 

c) nonrepresentative sampling — the sample measured may not represent the defined measurand; 

d) inadequate knowledge of the effects of environmental conditions on the measurement or imperfect 
measurement of environmental conditions; 

e) personal bias in reading analogue instruments; 

f) finite instrument resolution or discrimination threshold; 

g) inexact values of measurement standards and reference materials; 

h) inexact values of constants and other parameters obtained from external sources and used in the 
data-reduction algorithm; 

i) approximations and assumptions incorporated in the measurement method and procedure; 

j) variations in repeated observations of the measurand under apparently identical conditions. 

These sources are not necessarily independent, and some of sources a) to i) may contribute to source j). Of 
course, an unrecognized systematic effect cannot be taken into account in the evaluation of the uncertainty of 
the result of a measurement but contributes to its error. 

3.3.3 Recommendation INC-1 (1980) of the Working Group on the Statement of Uncertainties groups 
uncertainty components into two categories based on their method of evaluation, “A” and “B” (see 0.7, 2.3.2, 
and 2.3.3). These categories apply to uncertainty and are not substitutes for the words “random” and 
“systematic”. The uncertainty of a correction for a known systematic effect may in some cases be obtained by 
a Type A evaluation while in other cases by a Type B evaluation, as may the uncertainty characterizing a 
random effect. 

NOTE In some publications, uncertainty components are categorized as “random” and “systematic” and are 
associated with errors arising from random effects and known systematic effects, respectively. Such categorization of 
components of uncertainty can be ambiguous when generally applied. For example, a “random” component of uncertainty 
in one measurement may become a “systematic” component of uncertainty in another measurement in which the result of 
the first measurement is used as an input datum. Categorizing the methods of evaluating uncertainty components rather 
than the components themselves avoids such ambiguity. At the same time, it does not preclude collecting individual 
components that have been evaluated by the two different methods into designated groups to be used for a particular 
purpose (see 3.4.3). 

3.3.4 The purpose of the Type A and Type B classification is to indicate the two different ways of evaluating 
uncertainty components and is for convenience of discussion only; the classification is not meant to indicate 
that there is any difference in the nature of the components resulting from the two types of evaluation. Both 
types of evaluation are based on probability distributions (C.2.3), and the uncertainty components resulting 
from either type are quantified by variances or standard deviations. 

3.3.5 The estimated variance u2 characterizing an uncertainty component obtained from a Type A 
evaluation is calculated from series of repeated observations and is the familiar statistically estimated variance 
s2 (see 4.2). The estimated standard deviation (C.2.12, C.2.21, C.3.3) u, the positive square root of u2, is 
thus u = s and for convenience is sometimes called a Type A standard uncertainty. For an uncertainty 
component obtained from a Type B evaluation, the estimated variance u2 is evaluated using available 
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knowledge (see 4.3), and the estimated standard deviation u is sometimes called a Type B standard 
uncertainty. 

Thus a Type A standard uncertainty is obtained from a probability density function (C.2.5) derived from an 
observed frequency distribution (C.2.18), while a Type B standard uncertainty is obtained from an assumed 
probability density function based on the degree of belief that an event will occur [often called subjective 
probability (C.2.1)]. Both approaches employ recognized interpretations of probability. 

NOTE A Type B evaluation of an uncertainty component is usually based on a pool of comparatively reliable 
information (see 4.3.1). 

3.3.6 The standard uncertainty of the result of a measurement, when that result is obtained from the values 
of a number of other quantities, is termed combined standard uncertainty and denoted by uc. It is the 
estimated standard deviation associated with the result and is equal to the positive square root of the 
combined variance obtained from all variance and covariance (C.3.4) components, however evaluated, using 
what is termed in this Guide the law of propagation of uncertainty (see Clause 5). 

3.3.7 To meet the needs of some industrial and commercial applications, as well as requirements in the 
areas of health and safety, an expanded uncertainty U is obtained by multiplying the combined standard 
uncertainty uc by a coverage factor k. The intended purpose of U is to provide an interval about the result of a 
measurement that may be expected to encompass a large fraction of the distribution of values that could 
reasonably be attributed to the measurand. The choice of the factor k, which is usually in the range 2 to 3, is 
based on the coverage probability or level of confidence required of the interval (see Clause 6). 

NOTE The coverage factor k is always to be stated, so that the standard uncertainty of the measured quantity can be 
recovered for use in calculating the combined standard uncertainty of other measurement results that may depend on that 
quantity. 

3.4 Practical considerations 

3.4.1 If all of the quantities on which the result of a measurement depends are varied, its uncertainty can be 
evaluated by statistical means. However, because this is rarely possible in practice due to limited time and 
resources, the uncertainty of a measurement result is usually evaluated using a mathematical model of the 
measurement and the law of propagation of uncertainty. Thus implicit in this Guide is the assumption that a 
measurement can be modelled mathematically to the degree imposed by the required accuracy of the 
measurement. 

3.4.2 Because the mathematical model may be incomplete, all relevant quantities should be varied to the 
fullest practicable extent so that the evaluation of uncertainty can be based as much as possible on observed 
data. Whenever feasible, the use of empirical models of the measurement founded on long-term quantitative 
data, and the use of check standards and control charts that can indicate if a measurement is under statistical 
control, should be part of the effort to obtain reliable evaluations of uncertainty. The mathematical model 
should always be revised when the observed data, including the result of independent determinations of the 
same measurand, demonstrate that the model is incomplete. A well-designed experiment can greatly facilitate 
reliable evaluations of uncertainty and is an important part of the art of measurement. 

3.4.3 In order to decide if a measurement system is functioning properly, the experimentally observed 
variability of its output values, as measured by their observed standard deviation, is often compared with the 
predicted standard deviation obtained by combining the various uncertainty components that characterize the 
measurement. In such cases, only those components (whether obtained from Type A or Type B evaluations) 
that could contribute to the experimentally observed variability of these output values should be considered. 

NOTE Such an analysis may be facilitated by gathering those components that contribute to the variability and those 
that do not into two separate and appropriately labelled groups. 

3.4.4 In some cases, the uncertainty of a correction for a systematic effect need not be included in the 
evaluation of the uncertainty of a measurement result. Although the uncertainty has been evaluated, it may be 
ignored if its contribution to the combined standard uncertainty of the measurement result is insignificant. If the 
value of the correction itself is insignificant relative to the combined standard uncertainty, it too may be 
ignored. 
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3.4.5 It often occurs in practice, especially in the domain of legal metrology, that a device is tested through 
a comparison with a measurement standard and the uncertainties associated with the standard and the 
comparison procedure are negligible relative to the required accuracy of the test. An example is the use of a 
set of well-calibrated standards of mass to test the accuracy of a commercial scale. In such cases, because 
the components of uncertainty are small enough to be ignored, the measurement may be viewed as 
determining the error of the device under test. (See also F.2.4.2.) 

3.4.6 The estimate of the value of a measurand provided by the result of a measurement is sometimes 
expressed in terms of the adopted value of a measurement standard rather than in terms of the relevant unit 
of the International System of Units (SI). In such cases, the magnitude of the uncertainty ascribable to the 
measurement result may be significantly smaller than when that result is expressed in the relevant SI unit. (In 
effect, the measurand has been redefined to be the ratio of the value of the quantity to be measured to the 
adopted value of the standard.) 

EXAMPLE A high-quality Zener voltage standard is calibrated by comparison with a Josephson effect voltage 
reference based on the conventional value of the Josephson constant recommended for international use by the CIPM. 
The relative combined standard uncertainty uc(VS)/VS (see 5.1.6) of the calibrated potential difference VS of the Zener 
standard is 2 × 10−8 when VS is reported in terms of the conventional value, but uc(VS)/VS is 4 × 10−7 when VS is reported 
in terms of the SI unit of potential difference, the volt (V), because of the additional uncertainty associated with the SI 
value of the Josephson constant. 

3.4.7 Blunders in recording or analysing data can introduce a significant unknown error in the result of a 
measurement. Large blunders can usually be identified by a proper review of the data; small ones could be 
masked by, or even appear as, random variations. Measures of uncertainty are not intended to account for 
such mistakes. 

3.4.8 Although this Guide provides a framework for assessing uncertainty, it cannot substitute for critical 
thinking, intellectual honesty and professional skill. The evaluation of uncertainty is neither a routine task nor a 
purely mathematical one; it depends on detailed knowledge of the nature of the measurand and of the 
measurement. The quality and utility of the uncertainty quoted for the result of a measurement therefore 
ultimately depend on the understanding, critical analysis, and integrity of those who contribute to the 
assignment of its value. 

4 Evaluating standard uncertainty 

Additional guidance on evaluating uncertainty components, mainly of a practical nature, may be found in 
Annex F. 

4.1 Modelling the measurement 

4.1.1 In most cases, a measurand Y is not measured directly, but is determined from N other quantities 
X1, X2, ..., XN through a functional relationship f : 

( )1 2, , ..., NY f X X X=  (1) 

NOTE 1 For economy of notation, in this Guide the same symbol is used for the physical quantity (the measurand) and 
for the random variable (see 4.2.1) that represents the possible outcome of an observation of that quantity. When it is 
stated that Xi has a particular probability distribution, the symbol is used in the latter sense; it is assumed that the physical 
quantity itself can be characterized by an essentially unique value (see 1.2 and 3.1.3). 

NOTE 2 In a series of observations, the kth observed value of Xi is denoted by Xi,k ; hence if R denotes the resistance 
of a resistor, the kth observed value of the resistance is denoted by Rk . 

NOTE 3 The estimate of Xi (strictly speaking, of its expectation) is denoted by xi. 
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EXAMPLE If a potential difference V is applied to the terminals of a temperature-dependent resistor that has a 
resistance R0 at the defined temperature t0 and a linear temperature coefficient of resistance α, the power P (the 
measurand) dissipated by the resistor at the temperature t depends on V, R0, α, and t according to 

( ) ( ){ }2
0 0 0, , , 1P f V R t V R t tα α⎡ ⎤= = + −⎣ ⎦  

NOTE Other methods of measuring P would be modelled by different mathematical expressions. 

4.1.2 The input quantities X1, X2, ..., XN upon which the output quantity Y depends may themselves be 
viewed as measurands and may themselves depend on other quantities, including corrections and correction 
factors for systematic effects, thereby leading to a complicated functional relationship f  that may never be 
written down explicitly. Further, f  may be determined experimentally (see 5.1.4) or exist only as an algorithm 
that must be evaluated numerically. The function f as it appears in this Guide is to be interpreted in this 
broader context, in particular as that function which contains every quantity, including all corrections and 
correction factors, that can contribute a significant component of uncertainty to the measurement result. 

Thus, if data indicate that f  does not model the measurement to the degree imposed by the required accuracy 
of the measurement result, additional input quantities must be included in f  to eliminate the inadequacy (see 
3.4.2). This may require introducing an input quantity to reflect incomplete knowledge of a phenomenon that 
affects the measurand. In the example of 4.1.1, additional input quantities might be needed to account for a 
known nonuniform temperature distribution across the resistor, a possible nonlinear temperature coefficient of 
resistance, or a possible dependence of resistance on barometric pressure. 

NOTE Nonetheless, Equation (1) may be as elementary as Y = X1 − X2. This expression models, for example, the 
comparison of two determinations of the same quantity X. 

4.1.3 The set of input quantities X1, X2, ..., XN may be categorized as: 

⎯ quantities whose values and uncertainties are directly determined in the current measurement. These 
values and uncertainties may be obtained from, for example, a single observation, repeated observations, 
or judgement based on experience, and may involve the determination of corrections to instrument readings 
and corrections for influence quantities, such as ambient temperature, barometric pressure, and humidity; 

⎯ quantities whose values and uncertainties are brought into the measurement from external sources, such 
as quantities associated with calibrated measurement standards, certified reference materials, and 
reference data obtained from handbooks. 

4.1.4 An estimate of the measurand Y, denoted by y, is obtained from Equation (1) using input estimates 
x1, x2, ..., xN for the values of the N quantities X1, X2, ..., XN. Thus the output estimate y, which is the result of 
the measurement, is given by 

( )1 2, , ..., Ny f x x x=  (2) 

NOTE In some cases, the estimate y may be obtained from 

( )1, 2, ,
1 1

1 1 , , ...,
n n

k k k N k
k k

y Y Y f X X X
n n= =

= = =∑ ∑  

That is, y is taken as the arithmetic mean or average (see 4.2.1) of n independent determinations Yk of Y, each 
determination having the same uncertainty and each being based on a complete set of observed values of the N input 
quantities Xi obtained at the same time. This way of averaging, rather than ( )1 2, , ..., Ny f X X X= , where 

,
1

1 n

i i k
k

X X
n =

= ∑  

is the arithmetic mean of the individual observations Xi,k , may be preferable when f is a nonlinear function of the input 
quantities X1, X2, ..., XN , but the two approaches are identical if f is a linear function of the Xi (see H.2 and H.4). 

4.1.5 The estimated standard deviation associated with the output estimate or measurement result y, 
termed combined standard uncertainty and denoted by uc(y), is determined from the estimated standard 
deviation associated with each input estimate xi , termed standard uncertainty and denoted by u(xi) (see 3.3.5 
and 3.3.6). 
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4.1.6 Each input estimate xi and its associated standard uncertainty u(xi) are obtained from a distribution of 
possible values of the input quantity Xi . This probability distribution may be frequency based, that is, based on 
a series of observations Xi,k of Xi , or it may be an a priori distribution. Type A evaluations of standard 
uncertainty components are founded on frequency distributions while Type B evaluations are founded on a 
priori distributions. It must be recognized that in both cases the distributions are models that are used to 
represent the state of our knowledge. 

4.2 Type A evaluation of standard uncertainty 

4.2.1 In most cases, the best available estimate of the expectation or expected value µq of a quantity q that 
varies randomly [a random variable (C.2.2)], and for which n independent observations qk have been 
obtained under the same conditions of measurement (see B.2.15), is the arithmetic mean or average q  
(C.2.19) of the n observations: 

1

1 n

k
k

q q
n =

= ∑  (3) 

Thus, for an input quantity Xi estimated from n independent repeated observations Xi,k , the arithmetic mean 
iX  obtained from Equation (3) is used as the input estimate xi in Equation (2) to determine the measurement 

result y; that is, i ix X= . Those input estimates not evaluated from repeated observations must be obtained by 
other methods, such as those indicated in the second category of 4.1.3. 

4.2.2 The individual observations qk differ in value because of random variations in the influence quantities, 
or random effects (see 3.2.2). The experimental variance of the observations, which estimates the variance 
σ 2 of the probability distribution of q, is given by 

( ) ( )22

1

1
1

n

k j
j

s q q q
n =

= −
− ∑  (4) 

This estimate of variance and its positive square root s(qk), termed the experimental standard deviation 
(B.2.17), characterize the variability of the observed values qk , or more specifically, their dispersion about their 
mean q . 

4.2.3 The best estimate of ( )2 2q nσ σ= , the variance of the mean, is given by 

( ) ( )2
2 ks q

s q
n

=  (5) 

The experimental variance of the mean 2( )s q  and the experimental standard deviation of the mean ( )s q  
(B.2.17, Note 2), equal to the positive square root of 2( )s q , quantify how well q  estimates the expectation µq 
of q, and either may be used as a measure of the uncertainty of q . 

Thus, for an input quantity Xi determined from n independent repeated observations Xi,k , the standard 
uncertainty u(xi) of its estimate i ix X=  is ( ) ( )i iu x s X= , with 2 ( )is X  calculated according to Equation (5). For 
convenience, 2 2( ) ( )i iu x s X=  and ( ) ( )i iu x s X=  are sometimes called a Type A variance and a Type A 
standard uncertainty, respectively. 

NOTE 1 The number of observations n should be large enough to ensure that q  provides a reliable estimate of the 
expectation µq of the random variable q and that 2( )s q  provides a reliable estimate of the variance 2 2( )q nσ σ=  (see 
4.3.2, note). The difference between 2( )s q  and 2( )qσ  must be considered when one constructs confidence intervals (see 
6.2.2). In this case, if the probability distribution of q is a normal distribution (see 4.3.4), the difference is taken into account 
through the t-distribution (see G.3.2). 

NOTE 2 Although the variance 2( )s q  is the more fundamental quantity, the standard deviation ( )s q  is more 
convenient in practice because it has the same dimension as q and a more easily comprehended value than that of the 
variance. 
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4.2.4 For a well-characterized measurement under statistical control, a combined or pooled estimate of 
variance 2

ps  (or a pooled experimental standard deviation sp) that characterizes the measurement may be 
available. In such cases, when the value of a measurand q is determined from n independent observations, 
the experimental variance of the arithmetic mean q  of the observations is estimated better by 2

p ns  than by 
s2(qk)/n  and the standard uncertainty is pu s n= . (See also the Note to H.3.6.) 

4.2.5 Often an estimate xi of an input quantity Xi is obtained from a curve that has been fitted to 
experimental data by the method of least squares. The estimated variances and resulting standard 
uncertainties of the fitted parameters characterizing the curve and of any predicted points can usually be 
calculated by well-known statistical procedures (see H.3 and Reference [8]). 

4.2.6 The degrees of freedom (C.2.31) vi of u(xi) (see G.3), equal to n − 1 in the simple case where i ix X=  
and ( ) ( )i iu x s X=  are calculated from n independent observations as in 4.2.1 and 4.2.3, should always be 
given when Type A evaluations of uncertainty components are documented. 

4.2.7 If the random variations in the observations of an input quantity are correlated, for example, in time, 
the mean and experimental standard deviation of the mean as given in 4.2.1 and 4.2.3 may be inappropriate 
estimators (C.2.25) of the desired statistics (C.2.23). In such cases, the observations should be analysed by 
statistical methods specially designed to treat a series of correlated, randomly-varying measurements. 

NOTE Such specialized methods are used to treat measurements of frequency standards. However, it is possible 
that as one goes from short-term measurements to long-term measurements of other metrological quantities, the 
assumption of uncorrelated random variations may no longer be valid and the specialized methods could be used to treat 
these measurements as well. (See Reference [9], for example, for a detailed discussion of the Allan variance.) 

4.2.8 The discussion of Type A evaluation of standard uncertainty in 4.2.1 to 4.2.7 is not meant to be 
exhaustive; there are many situations, some rather complex, that can be treated by statistical methods. An 
important example is the use of calibration designs, often based on the method of least squares, to evaluate 
the uncertainties arising from both short- and long-term random variations in the results of comparisons of 
material artefacts of unknown values, such as gauge blocks and standards of mass, with reference standards 
of known values. In such comparatively simple measurement situations, components of uncertainty can 
frequently be evaluated by the statistical analysis of data obtained from designs consisting of nested 
sequences of measurements of the measurand for a number of different values of the quantities upon which it 
depends — a so-called analysis of variance (see H.5). 

NOTE At lower levels of the calibration chain, where reference standards are often assumed to be exactly known 
because they have been calibrated by a national or primary standards laboratory, the uncertainty of a calibration result 
may be a single Type A standard uncertainty evaluated from the pooled experimental standard deviation that 
characterizes the measurement. 

4.3 Type B evaluation of standard uncertainty 

4.3.1 For an estimate xi of an input quantity Xi that has not been obtained from repeated observations, the 
associated estimated variance u2(xi) or the standard uncertainty u(xi) is evaluated by scientific judgement 
based on all of the available information on the possible variability of Xi . The pool of information may include 

⎯ previous measurement data; 

⎯ experience with or general knowledge of the behaviour and properties of relevant materials and instruments; 

⎯ manufacturer's specifications; 

⎯ data provided in calibration and other certificates; 

⎯ uncertainties assigned to reference data taken from handbooks. 

For convenience, u2(xi) and u(xi) evaluated in this way are sometimes called a Type B variance and a Type B 
standard uncertainty, respectively. 

NOTE When xi is obtained from an a priori distribution, the associated variance is appropriately written as u2(Xi), but 
for simplicity, u2(xi) and u(xi) are used throughout this Guide. 
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4.3.2 The proper use of the pool of available information for a Type B evaluation of standard uncertainty 
calls for insight based on experience and general knowledge, and is a skill that can be learned with practice. It 
should be recognized that a Type B evaluation of standard uncertainty can be as reliable as a Type A 
evaluation, especially in a measurement situation where a Type A evaluation is based on a comparatively 
small number of statistically independent observations. 

NOTE If the probability distribution of q in Note 1 to 4.2.3 is normal, then [ ( )] ( )s q qσ σ , the standard deviation of ( )s q  
relative to ( )qσ , is approximately [2(n − 1)]−1/2. Thus, taking [ ( )]s qσ  as the uncertainty of ( )s q , for n = 10 observations, the 
relative uncertainty in ( )s q  is 24 percent, while for n = 50 observations it is 10 percent. (Additional values are given in 
Table E.1 in Annex E.) 

4.3.3 If the estimate xi is taken from a manufacturer's specification, calibration certificate, handbook, or 
other source and its quoted uncertainty is stated to be a particular multiple of a standard deviation, the 
standard uncertainty u(xi) is simply the quoted value divided by the multiplier, and the estimated variance 
u2(xi) is the square of that quotient. 

EXAMPLE A calibration certificate states that the mass of a stainless steel mass standard mS of nominal value one 
kilogram is 1 000,000 325 g and that “the uncertainty of this value is 240 µg at the three standard deviation level”. The 
standard uncertainty of the mass standard is then simply u(mS) = (240 µg)/3 = 80 µg. This corresponds to a relative 
standard uncertainty u(mS)/mS of 80 × 10−9 (see 5.1.6). The estimated variance is u2(mS) = (80 µg)2 = 6,4 × 10−9 g2. 

NOTE In many cases, little or no information is provided about the individual components from which the quoted 
uncertainty has been obtained. This is generally unimportant for expressing uncertainty according to the practices of this 
Guide since all standard uncertainties are treated in the same way when the combined standard uncertainty of a 
measurement result is calculated (see Clause 5). 

4.3.4 The quoted uncertainty of xi is not necessarily given as a multiple of a standard deviation as in 4.3.3. 
Instead, one may find it stated that the quoted uncertainty defines an interval having a 90, 95, or 99 percent 
level of confidence (see 6.2.2). Unless otherwise indicated, one may assume that a normal distribution 
(C.2.14) was used to calculate the quoted uncertainty, and recover the standard uncertainty of xi by dividing 
the quoted uncertainty by the appropriate factor for the normal distribution. The factors corresponding to the 
above three levels of confidence are 1,64; 1,96; and 2,58 (see also Table G.1 in Annex G). 

NOTE There would be no need for such an assumption if the uncertainty had been given in accordance with the 
recommendations of this Guide regarding the reporting of uncertainty, which stress that the coverage factor used is always 
to be given (see 7.2.3). 

EXAMPLE A calibration certificate states that the resistance of a standard resistor RS of nominal value ten ohms is 
10,000 742 Ω ± 129 µΩ at 23 °C and that “the quoted uncertainty of 129 µΩ defines an interval having a level of 
confidence of 99 percent”. The standard uncertainty of the resistor may be taken as u(RS) = (129 µΩ)/2,58 = 50 µΩ, which 
corresponds to a relative standard uncertainty u(RS)/RS of 5,0 × 10−6 (see 5.1.6). The estimated variance is 
u2(RS) = (50 µΩ)2 = 2,5 × 10−9 Ω2. 

4.3.5 Consider the case where, based on the available information, one can state that “there is a fifty-fifty 
chance that the value of the input quantity Xi lies in the interval a− to a+” (in other words, the probability that Xi 
lies within this interval is 0,5 or 50 percent). If it can be assumed that the distribution of possible values of Xi is 
approximately normal, then the best estimate xi of Xi can be taken to be the midpoint of the interval. Further, if 
the half-width of the interval is denoted by a = (a+ − a−)/2, one can take u(xi) = 1,48a, because for a normal 
distribution with expectation µ and standard deviation σ  the interval µ ± σ /1,48 encompasses approximately 
50 percent of the distribution. 

EXAMPLE A machinist determining the dimensions of a part estimates that its length lies, with probability 0,5, in the 
interval 10,07 mm to 10,15 mm, and reports that l = (10,11 ± 0,04) mm, meaning that ± 0,04 mm defines an interval having 
a level of confidence of 50 percent. Then a = 0,04 mm, and if one assumes a normal distribution for the possible values of 
l, the standard uncertainty of the length is u(l) = 1,48 × 0,04 mm ≈ 0,06 mm and the estimated variance is 
u2(l) = (1,48 × 0,04 mm)2 = 3,5 × 10−3 mm2. 

4.3.6 Consider a case similar to that of 4.3.5 but where, based on the available information, one can state 
that “there is about a two out of three chance that the value of Xi lies in the interval a− to a+” (in other words, 
the probability that Xi lies within this interval is about 0,67). One can then reasonably take u(xi) = a, because 
for a normal distribution with expectation µ and standard deviation σ the interval µ ± σ encompasses about 
68,3 percent of the distribution. 
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NOTE It would give the value of u(xi) considerably more significance than is obviously warranted if one were to use 
the actual normal deviate 0,967 42 corresponding to probability p = 2/3, that is, if one were to write 
u(xi) = a/0,967 42 = 1,033a. 

4.3.7 In other cases, it may be possible to estimate only bounds (upper and lower limits) for Xi, in particular, 
to state that “the probability that the value of Xi lies within the interval a− to a+ for all practical purposes is 
equal to one and the probability that Xi lies outside this interval is essentially zero”. If there is no speciflc 
knowledge about the possible values of Xi within the interval, one can only assume that it is equally probable 
for Xi to lie anywhere within it (a uniform or rectangular distribution of possible values — see 4.4.5 and 
Figure 2 a). Then xi, the expectation or expected value of Xi, is the midpoint of the interval, xi = (a− + a+)/2, 
with associated variance 

( ) ( )22 12iu x a a+ −= −  (6) 

If the difference between the bounds, a+ − a−, is denoted by 2a, then Equation (6) becomes 

( )2 2 3iu x a=  (7) 

NOTE When a component of uncertainty determined in this manner contributes significantly to the uncertainty of a 
measurement result, it is prudent to obtain additional data for its further evaluation. 

EXAMPLE 1 A handbook gives the value of the coefficient of linear thermal expansion of pure copper at 20 °C, 
α20(Cu), as 16,52 × 10−6 °C−1 and simply states that “the error in this value should not exceed 0,40 × 10−6 °C−1”. Based 
on this limited information, it is not unreasonable to assume that the value of α20(Cu) lies with equal probability in the 
interval 16,12 × 10−6 °C−1 to 16,92 × 10−6 °C−1, and that it is very unlikely that α20(Cu) lies outside this interval. The 
variance of this symmetric rectangular distribution of possible values of α20(Cu) of half-width a = 0,40 × 10−6 °C−1 is then, 
from Equation (7), u2(α20) = (0,40 × 10−6 °C−1)2/3 = 53,3 × 10−15 °C−2, and the standard uncertainty is 
u(α20) = (0,40 × 10−6 °C−1) / 3 = 0,23 × 10−6 °C−1. 

EXAMPLE 2 A manufacturer's specifications for a digital voltmeter state that “between one and two years after the 
instrument is calibrated, its accuracy on the 1 V range is 14 × 10−6 times the reading plus 2 × 10−6 times the range”. 
Consider that the instrument is used 20 months after calibration to measure on its 1 V range a potential difference V, and 
the arithmetic mean of a number of independent repeated observations of V is found to be V = 0,928 571 V with a Type A 
standard uncertainty ( )u V = 12 µV. One can obtain the standard uncertainty associated with the manufacturer's 
specifications from a Type B evaluation by assuming that the stated accuracy provides symmetric bounds to an additive 
correction to ,V ,V∆  of expectation equal to zero and with equal probability of lying anywhere within the bounds. The 
half-width a of the symmetric rectangular distribution of possible values of V∆  is then 
a = (14 × 10−6) × (0,928 571 V) + (2 × 10−6) × (1 V) = 15 µV, and from Equation (7), 2( )u V∆ = 75 µV2 and ( )u V∆ = 8,7 µV. 
The estimate of the value of the measurand V, for simplicity denoted by the same symbol V, is given by 
V V V= + ∆ = 0,928 571 V. One can obtain the combined standard uncertainty of this estimate by combining the 12 µV 
Type A standard uncertainty of V  with the 8,7 µV Type B standard uncertainty of V∆ . The general method for combining 
standard uncertainty components is given in Clause 5, with this particular example treated in 5.1.5. 

4.3.8 In 4.3.7, the upper and lower bounds a+ and a− for the input quantity Xi may not be symmetric with 
respect to its best estimate xi; more specifically, if the lower bound is written as a− = xi − b− and the upper 
bound as a+ = xi − b+, then b− ≠ b+. Since in this case xi (assumed to be the expectation of Xi) is not at the 
centre of the interval a− to a+, the probability distribution of Xi cannot be uniform throughout the interval. 
However, there may not be enough information available to choose an appropriate distribution; different 
models will lead to different expressions for the variance. In the absence of such information, the simplest 
approximation is 

( ) ( ) ( )2 2
2

12 12i
b b a a

u x + − + −+ −
= =  (8) 

which is the variance of a rectangular distribution with full width b+ + b−. (Asymmetric distributions are also 
discussed in F.2.4.4 and G.5.3.) 
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EXAMPLE If in Example 1 of 4.3.7 the value of the coefficient is given in the handbook as 
α20(Cu) = 16,52 × 10−6 °C−1 and it is stated that “the smallest possible value is 16,40 × 10−6 °C−1 and the largest possible 
value is 16,92 × 10−6 °C−1”, then b− = 0,12 × 10−6 °C−1, b+ = 0,40 × 10−6 °C−1, and, from Equation (8), 
u(α20) = 0,15 × 10−6 °C−1. 

NOTE 1 In many practical measurement situations where the bounds are asymmetric, it may be appropriate to apply a 
correction to the estimate xi of magnitude (b+ − b−)/2 so that the new estimate x′i of Xi is at the midpoint of the bounds: 
x′i = (a− + a+)/2. This reduces the situation to the case of 4.3.7, with new values b′+ = b′− = (b+ + b−)/2 = (a+ − a−)/2 = a. 

NOTE 2 Based on the principle of maximum entropy, the probability density function in the asymmetric case  
may be shown to be p(Xi) = A exp[− λ(Xi − xi)], with A = [b− exp(λb−) + b+ exp(− λb+)]−1 and 
λ = {exp[λ(b− + b+)] − 1}/{b− exp[λ(b− + b+)] + b+}. This leads to the variance u2(xi) = b+b− − (b+ − b−)/λ; for b+ > b−, λ > 0 and 
for b+ < b−, λ < 0. 

4.3.9 In 4.3.7, because there was no specific knowledge about the possible values of Xi within its estimated 
bounds a− to a+, one could only assume that it was equally probable for Xi to take any value within those 
bounds, with zero probability of being outside them. Such step function discontinuities in a probability 
distribution are often unphysical. In many cases, it is more realistic to expect that values near the bounds are 
less likely than those near the midpoint. It is then reasonable to replace the symmetric rectangular distribution 
with a symmetric trapezoidal distribution having equal sloping sides (an isosceles trapezoid), a base of width 
a+ − a− = 2a, and a top of width 2aβ, where 0 u β u 1. As β → 1, this trapezoidal distribution approaches the 
rectangular distribution of 4.3.7, while for β = 0, it is a triangular distribution [see 4.4.6 and Figure 2 b)]. 
Assuming such a trapezoidal distribution for Xi, one finds that the expectation of Xi is xi = (a− + a+)/2 and its 
associated variance is 

( ) ( )2 2 21 6iu x a β= +  (9a) 

which becomes for the triangular distribution, β = 0, 

( )2 2 6iu x a=  (9b) 

NOTE 1 For a normal distribution with expectation µ and standard deviation σ, the interval µ ± 3σ encompasses 
approximately 99,73 percent of the distribution. Thus, if the upper and lower bounds a+ and a− define 99,73 percent limits 
rather than 100 percent limits, and Xi can be assumed to be approximately normally distributed rather than there being no 
specific knowledge about Xi between the bounds as in 4.3.7, then u2(xi) = a2/9. By comparison, the variance of a 
symmetric rectangular distribution of half-width a is a2/3 [Equation (7)] and that of a symmetric triangular distribution of 
half-width a is a2/6 [Equation (9b)]. The magnitudes of the variances of the three distributions are surprisingly similar in 
view of the large differences in the amount of information required to justify them. 

NOTE 2 The trapezoidal distribution is equivalent to the convolution of two rectangular distributions [10], one with a 
half-width a1 equal to the mean half-width of the trapezoid, a1 = a(1 + β)/2, the other with a half-width a2 equal to the mean 
width of one of the triangular portions of the trapezoid, a2 = a(1 − β)/2. The variance of the distribution is 2 2 2

1 23 3u a a= + . 
The convolved distribution can be interpreted as a rectangular distribution whose width 2a1 has itself an uncertainty 
represented by a rectangular distribution of width 2a2 and models the fact that the bounds on an input quantity are not 
exactly known. But even if a2 is as large as 30 percent of a1, u exceeds 1 3a  by less than 5 percent. 

4.3.10 It is important not to “double-count” uncertainty components. If a component of uncertainty arising 
from a particular effect is obtained from a Type B evaluation, it should be included as an independent 
component of uncertainty in the calculation of the combined standard uncertainty of the measurement result 
only to the extent that the effect does not contribute to the observed variability of the observations. This is 
because the uncertainty due to that portion of the effect that contributes to the observed variability is already 
included in the component of uncertainty obtained from the statistical analysis of the observations. 

4.3.11 The discussion of Type B evaluation of standard uncertainty in 4.3.3 to 4.3.9 is meant only to be 
indicative. Further, evaluations of uncertainty should be based on quantitative data to the maximum extent 
possible, as emphasized in 3.4.1 and 3.4.2. 
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4.4 Graphical illustration of evaluating standard uncertainty 

4.4.1 Figure 1 represents the estimation of the value of an input quantity Xi and the evaluation of the 
uncertainty of that estimate from the unknown distribution of possible measured values of Xi, or probability 
distribution of Xi, that is sampled by means of repeated observations. 

4.4.2 In Figure 1 a), it is assumed that the input quantity Xi is a temperature t and that its unknown 
distribution is a normal distribution with expectation µ t = 100 °C and standard deviation σ = 1,5 °C. Its 
probability density function (see C.2.14) is then 

( )
21 1exp

22
tt

p t
µ

σσ

⎡ ⎤−⎛ ⎞⎢ ⎥= − ⎜ ⎟⎢ ⎥π ⎝ ⎠⎣ ⎦
 

NOTE The definition of a probability density function p(z) requires that the relation ∫p(z)dz = 1 is satisfied. 

4.4.3 Figure 1 b) shows a histogram of n = 20 repeated observations tk of the temperature t that are 
assumed to have been taken randomly from the distribution of Figure 1 a). To obtain the histogram, the 
20 observations or samples, whose values are given in Table 1, are grouped into intervals 1 °C wide. 
(Preparation of a histogram is, of course, not required for the statistical analysis of the data.) 

Table 1 — Twenty repeated observations of the temperature t  
grouped in 1 °C intervals 

Interval 
t1 u t < t2 

Temperature 

t1/°C t2/°C t / °C 
94,5 95,5 — 
95,5 96,5 — 
96,5 97,5 96,90 
97,5 98,5 98,18; 98,25 
98,5 99,5 98,61; 99,03; 99,49 
99,5 100,5 99,56; 99,74; 99,89; 100,07; 100,33; 100,42 

100,5 101,5 100,68; 100,95; 101,11; 101,20 
101,5 102,5 101,57; 101,84; 102,36 
102,5 103,5 102,72 
103,5 104,5 — 
104,5 105,5 — 

 

The arithmetic mean or average t  of the n = 20 observations calculated according to Equation (3) is 
t  = 100,145 °C ≈ 100,14 °C and is assumed to be the best estimate of the expectation µ t of t based on the 
available data. The experimental standard deviation s(tk) calculated from Equation (4) is 
s(tk) = 1,489 °C ≈ 1,49 °C, and the experimental standard deviation of the mean ( )s t  calculated  
from Equation (5), which is the standard uncertainty ( )u t  of the mean ,t  is 

( ) ( ) ( ) 20 0,333 C 0,33 Cku t s t s t= = = ° ≈ ° . (For further calculations, it is likely that all of the digits would be 
retained.) 

NOTE Although the data in Table 1 are not implausible considering the widespread use of high-resolution digital 
electronic thermometers, they are for illustrative purposes and should not necessarily be interpreted as describing a real 
measurement. 



JCGM 100:2008 

 

16  © JCGM 2008 – All rights reserved
 

 
a) 

 
b) 

Figure 1 — Graphical illustration of evaluating the standard uncertainty of an input quantity 
from repeated observations 
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a) 

 
b) 

Figure 2 — Graphical illustration of evaluating the standard uncertainty of an input quantity  
from an a priori distribution 
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4.4.4 Figure 2 represents the estimation of the value of an input quantity Xi and the evaluation of the 
uncertainty of that estimate from an a priori distribution of possible values of Xi, or probability distribution of Xi, 
based on all of the available information. For both cases shown, the input quantity is again assumed to be a 
temperature t. 

4.4.5 For the case illustrated in Figure 2 a), it is assumed that little information is available about the input 
quantity t and that all one can do is suppose that t is described by a symmetric, rectangular a priori probability 
distribution of lower bound a− = 96 °C, upper bound a+ = 104 °C, and thus half-width a = (a+ − a−)/2 = 4 °C 
(see 4.3.7). The probability density function of t is then 

( ) ( )

( )

1 2 ,

0, otherwise.

p t a a t a

p t

− +=

=

u u
 

As indicated in 4.3.7, the best estimate of t is its expectation µ t = (a+ + a−)/2 = 100 °C, which follows from 
C.3.1. The standard uncertainty of this estimate is ( ) 3 2,3 Ctu aµ = ≈ ° , which follows from C.3.2 [see 
Equation (7)]. 

4.4.6 For the case illustrated in Figure 2 b), it is assumed that the available information concerning t is less 
limited and that t can be described by a symmetric, triangular a priori probability distribution of the same lower 
bound a− = 96 °C, the same upper bound a+ = 104 °C, and thus the same half-width a = (a+ − a−)/2 = 4 °C as 
in 4.4.5 (see 4.3.9). The probability density function of t is then 

( ) ( ) ( )

( ) ( ) ( )

( )

2

2

, 2

, 2

0, otherwise.

p t t a a a t a a

p t a t a a a t a

p t

− − + −

+ + − +

= − +

= − +

=

u u

u u  

As indicated in 4.3.9, the expectation of t is µ t = (a+ + a−)/2 = 100 °C, which follows from C.3.1. The standard 
uncertainty of this estimate is ( ) 6 1,6 Ctu aµ = ≈ ° , which follows from C.3.2 [see Equation 9 b)]. 

The above value, u(µ t) = 1,6 °C, may be compared with u(µ t) = 2,3 °C obtained in 4.4.5 from a rectangular 
distribution of the same 8 °C width; with σ = 1,5 °C of the normal distribution of Figure 1 a) whose −2,58σ to 
+2,58σ width, which encompasses 99 percent of the distribution, is nearly 8 °C; and with ( ) 0,33 Cu t = °  
obtained in 4.4.3 from 20 observations assumed to have been taken randomly from the same normal 
distribution. 

5 Determining combined standard uncertainty 

5.1 Uncorrelated input quantities 

This subclause treats the case where all input quantities are independent (C.3.7). The case where two or 
more input quantities are related, that is, are interdependent or correlated (C.2.8), is discussed in 5.2. 

5.1.1 The standard uncertainty of y, where y is the estimate of the measurand Y and thus the result of the 
measurement, is obtained by appropriately combining the standard uncertainties of the input estimates 
x1, x2, ..., xN (see 4.1). This combined standard uncertainty of the estimate y is denoted by uc(y). 

NOTE For reasons similar to those given in the note to 4.3.1, the symbols uc(y) and 2
c ( )u y  are used in all cases. 
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5.1.2 The combined standard uncertainty uc(y) is the positive square root of the combined variance 2
c ( )u y , 

which is given by 

( ) ( )
2

2 2
c

1

N

i
ii

fu y u x
x=

⎛ ⎞∂= ⎜ ⎟∂⎝ ⎠
∑  (10) 

where f  is the function given in Equation (1). Each u(xi) is a standard uncertainty evaluated as described in 4.2 
(Type A evaluation) or as in 4.3 (Type B evaluation). The combined standard uncertainty uc(y) is an estimated 
standard deviation and characterizes the dispersion of the values that could reasonably be attributed to the 
measurand Y (see 2.2.3). 

Equation (10) and its counterpart for correlated input quantities, Equation (13), both of which are based on a 
first-order Taylor series approximation of Y = f (X1, X2, ..., XN), express what is termed in this Guide the law of 
propagation of uncertainty (see E.3.1 and E.3.2). 

NOTE When the nonlinearity of f is significant, higher-order terms in the Taylor series expansion must be included in 
the expression for 2

c ( )u y , Equation (10). When the distribution of each Xi is normal , the most important terms of next 
highest order to be added to the terms of Equation (10) are 

( ) ( )
22 3

2 2
2

1 1

1
2

N N

i j
i j i i ji j

f f f u x u x
x x x x x= =

⎡ ⎤⎛ ⎞∂ ∂ ∂⎢ ⎥⎜ ⎟ +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦
∑∑  

See H.1 for an example of a situation where the contribution of higher-order terms to 2
c ( )u y  needs to be considered. 

5.1.3 The partial derivatives ∂f /∂xi are equal to ∂f /∂Xi evaluated at Xi = xi (see Note 1 below). These 
derivatives, often called sensitivity coefficients, describe how the output estimate y varies with changes in the 
values of the input estimates x1, x2, ..., xN. In particular, the change in y produced by a small change ∆xi in 
input estimate xi is given by (∆y)i = (∂f/∂xi)(∆xi). If this change is generated by the standard uncertainty of the 
estimate xi, the corresponding variation in y is (∂f/∂xi)u(xi). The combined variance 2

c ( )u y  can therefore be 
viewed as a sum of terms, each of which represents the estimated variance associated with the output 
estimate y generated by the estimated variance associated with each input estimate xi. This suggests writing 
Equation (10) as 

( ) ( ) ( )22 2
c

1 1

N N

i i i
i i

u y c u x u y
= =

⎡ ⎤= ≡⎣ ⎦∑ ∑  (11a) 

where 

( ) ( ),i i i i ic f x u y c u x≡ ∂ ∂ ≡  (11b) 

NOTE 1 Strictly speaking, the partial derivatives are ∂f/∂xi = ∂f/∂Xi evaluated at the expectations of the Xi. However, in 
practice, the partial derivatives are estimated by 

1 2, , ...,i i
N

f f
x X x x x

∂ ∂=
∂ ∂

 

NOTE 2 The combined standard uncertainty uc(y) may be calculated numerically by replacing ciu(xi) in Equation (11a) 
with 

( ) ( ){ }1 1
1 , ..., , ..., , ..., , ...,
2i i i N i i NZ f x x u x x f x x u x x⎡ ⎤ ⎡ ⎤= + − −⎣ ⎦ ⎣ ⎦  

That is, ui(y) is evaluated numerically by calculating the change in y due to a change in xi of +u(xi) and of −u(xi). The value 
of ui(y) may then be taken as │Zi│ and the value of the corresponding sensitivity coefficient ci as Zi/u(xi). 
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EXAMPLE For the example of 4.1.1, using the same symbol for both the quantity and its estimate for simplicity of 
notation, 

( ){ }1 0 02 1 2c P V V R t t P Vα⎡ ⎤≡ ∂ ∂ = + − =⎣ ⎦  

( ){ }2 2
2 0 0 0 01c P R V R t t P Rα⎡ ⎤≡ ∂ ∂ = − + − = −⎣ ⎦  

( ) ( ){ } ( ) ( )22
3 0 0 0 0 01 1c P V t t R t t P t t t tα α α⎡ ⎤ ⎡ ⎤≡ ∂ ∂ = − − + − = − − + −⎣ ⎦ ⎣ ⎦  

( ){ } ( )22
4 0 0 01 1c P t V R t t P t tα α α α⎡ ⎤ ⎡ ⎤≡ ∂ ∂ = − + − = − + −⎣ ⎦ ⎣ ⎦  

and 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

22 2 2
2 2 2 2 2
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5.1.4 Instead of being calculated from the function f, sensitivity coefficients ∂f/∂xi are sometimes 
determined experimentally: one measures the change in Y produced by a change in a particular Xi while 
holding the remaining input quantities constant. In this case, the knowledge of the function f (or a portion of it 
when only several sensitivity coefficients are so determined) is accordingly reduced to an empirical first-order 
Taylor series expansion based on the measured sensitivity coefficients. 

5.1.5 If Equation (1) for the measurand Y is expanded about nominal values Xi,0 of the input quantities Xi, 
then, to first order (which is usually an adequate approximation), Y = Y0 + c1δ1 + c2δ2 +... + cNδN, where 
Y0 = f (X1,0, X2,0, ..., XN,0), ci = (∂f/∂Xi) evaluated at Xi = Xi,0, and δi = Xi − Xi,0. Thus, for the purposes of an 
analysis of uncertainty, a measurand is usually approximated by a linear function of its variables by 
transforming its input quantities from Xi to δi (see E.3.1). 

EXAMPLE From Example 2 of 4.3.7, the estimate of the value of the measurand V is ,V V V= + ∆   
where 0,928 571 V,V =  ( ) 12 µV,u V =  the additive correction 0,V∆ =  and ( ) 8,7 µV.u V∆ =  Since / 1,V V∂ ∂ =  and 

/ ( ) 1,V V∂ ∂ ∆ =  the combined variance associated with V is given by 

( ) ( ) ( ) ( ) ( )2 22 2 2 12 2
c 12 µV 8,7 µV 219 10 Vu V u V u V −= + ∆ = + = ×  

and the combined standard uncertainty is uc(V ) = 15 µV, which corresponds to a relative combined standard uncertainty 
uc(V )/V of 16 × 10−6 (see 5.1.6). This is an example of the case where the measurand is already a linear function of the 
quantities on which it depends, with coefficients ci = +1. It follows from Equation (10) that if Y = c1X1 + c2X2 +... + cNXN and 
if the constants ci = +1 or −1, then 2 2

c 1( ) ( )N
i iu y u x==∑ . 

5.1.6 If Y is of the form 1 2
1 2 ... Npp p

NY c X X X=  and the exponents pi are known positive or negative numbers 
having negligible uncertainties, the combined variance, Equation (10), can be expressed as 

( ) ( ) 22
c

1

N

i i i
i

u y y p u x x
=

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦∑  (12) 

This is of the same form as Equation (11a) but with the combined variance 2
c ( )u y  expressed as a relative 

combined variance [uc(y)/y]2 and the estimated variance u2(xi) associated with each input estimate expressed 
as an estimated relative variance [u(xi)/xi]2. [The relative combined standard uncertainty is uc(y)/│y│ and the 
relative standard uncertainty of each input estimate is u(xi)/│xi│, │y│ ≠ 0 and │xi│ ≠ 0.] 

NOTE 1 When Y has this form, its transformation to a linear function of variables (see 5.1.5) is readily achieved by 
setting Xi = Xi,0(1 + δi), for then the following approximate relation results: 0 0 1( ) N

i i iY Y Y p δ=− =∑ . On the other hand, the 
logarithmic transformation Z = ln Y and Wi = ln Xi leads to an exact linearization in terms of the new variables: 

1In N
i i iZ c p W== +∑ . 
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NOTE 2 If each pi is either +1 or −1, Equation (12) becomes 2 2
1[ ( ) ] [ ( ) / ]N

c i i iu y y u x x==∑ , which shows that, for this 
special case, the relative combined variance associated with the estimate y is simply equal to the sum of the estimated 
relative variances associated with the input estimates xi. 

5.2 Correlated input quantities 

5.2.1 Equation (10) and those derived from it such as Equations (11a) and (12) are valid only if the input 
quantities Xi are independent or uncorrelated (the random variables, not the physical quantities that are 
assumed to be invariants — see 4.1.1, Note 1). If some of the Xi are significantly correlated, the correlations 
must be taken into account. 

5.2.2 When the input quantities are correlated, the appropriate expression for the combined variance 2
c ( )u y  

associated with the result of a measurement is 

( ) ( ) ( ) ( )
2 1

2 2
c

1 1 1 1 1
, 2 ,

N N N N N

i j i i j
i j i i ji j i i j i

f f f f fu y u x x u x u x x
x x x x x

−

= = = = = +

⎛ ⎞∂ ∂ ∂ ∂ ∂= = +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∑∑ ∑ ∑ ∑  (13) 

where xi and xj are the estimates of Xi and Xj and u(xi, xj) = u(xj, xi) is the estimated covariance associated 
with xi and xj. The degree of correlation between xi and xj is characterized by the estimated correlation 
coefficient (C.3.6) 

( ) ( )
( ) ( )

,
,

i j
i j

i j

u x x
r x x

u x u x
=  (14) 

where r(xi, xj) = r(xj, xi), and −1 u r(xi, xj) u +1. If the estimates xi and xj are independent, r(xi, xj) = 0, and a 
change in one does not imply an expected change in the other. (See C.2.8, C.3.6, and C.3.7 for further 
discussion.) 

In terms of correlation coefficients, which are more readily interpreted than covariances, the covariance term 
of Equation (13) may be written as 

( ) ( ) ( )
1

1 1
2 ,

N N

i j i j
i ji j i

f f u x u x r x x
x x

−

= = +

∂ ∂
∂ ∂∑ ∑  (15) 

Equation (13) then becomes, with the aid of Equation (11b), 

( ) ( ) ( ) ( ) ( )
1

2 2 2
c

1 1 1
2 ,

N N N

i i i j i j i j
i i j i

u y c u x c c u x u x r x x
−

= = = +
= +∑ ∑ ∑  (16) 

NOTE 1 For the very special case where all of the input estimates are correlated with correlation coefficients 
r (xi, xj) = +1, Equation (16) reduces to 

( ) ( ) ( )
2 2

2
c

1 1

N N

i i i
ii i

fu y c u x u x
x= =

⎡ ⎤ ⎡ ⎤∂
⎢ ⎥ ⎢ ⎥= =

∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑  

The combined standard uncertainty uc(y) is thus simply a linear sum of terms representing the variation of the output 
estimate y generated by the standard uncertainty of each input estimate xi (see 5.1.3). [This linear sum should not be 
confused with the general law of error propagation although it has a similar form; standard uncertainties are not errors 
(see E.3.2).] 
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EXAMPLE Ten resistors, each of nominal resistance Ri = 1 000 Ω, are calibrated with a negligible uncertainty of 
comparison in terms of the same 1 000 Ω standard resistor Rs characterized by a standard uncertainty u(Rs) = 100 mΩ as 
given in its calibration certificate. The resistors are connected in series with wires having negligible resistance in order to 
obtain a reference resistance Rref of nominal value 10 kΩ. Thus 10

ref 1( )i i iR f R R== =∑ . Since r (xi, xj) = r (Ri, Rj) = +1 for 
each resistor pair (see F.1.2.3, Example 2), the equation of this note applies. Since for each resistor ∂f/∂xi = ∂Rref/∂Ri = 1, 
and u(xi) = u(Ri) = u(Rs) (see F.1.2.3, Example 2), that equation yields for the combined standard uncertainty of Rref, 

10
c ref 1( ) ( ) 10 (100 m ) 1i su R u R== = × Ω = Ω∑ . The result 

1/210 2
c ref 1( ) ( ) 0,32i su R u R=

⎡ ⎤= = Ω⎣ ⎦∑  obtained from Equation (10) 
is incorrect because it does not take into account that all of the calibrated values of the ten resistors are correlated. 

NOTE 2 The estimated variances u2(xi) and estimated covariances u(xi, xj) may be considered as the elements of a 
covariance matrix with elements uij. The diagonal elements uii of the matrix are the variances u2(xi), while the off-diagonal 
elements uij (i ≠ j) are the covariances u(xi, xj) = u(xj, xi). If two input estimates are uncorrelated, their associated 
covariance and the corresponding elements uij and uji of the covariance matrix are 0. If the input estimates are all 
uncorrelated, all of the off-diagonal elements are zero and the covariance matrix is diagonal. (See also C.3.5.) 

NOTE 3 For the purposes of numerical evaluation, Equation (16) may be written as 

( ) ( )2
c

1 1
,

N N

i j i j
i j

u y Z Z r x x
= =

=∑∑  

where Zi is given in 5.1.3, Note 2. 

NOTE 4 If the Xi of the special form considered in 5.1.6 are correlated, then the terms 

( ) ( ) ( )
1

1 1
2 ,

N N

i i i j j j i j
i j i

p u x x p u x x r x x
−

= = +

⎡ ⎤⎡ ⎤
⎣ ⎦ ⎣ ⎦∑ ∑  

must be added to the right-hand side of Equation (12). 

5.2.3 Consider two arithmetic means q  and r  that estimate the expectations µq and µr of two randomly 
varying quantities q and r, and let q  and r  be calculated from n independent pairs of simultaneous 
observations of q and r made under the same conditions of measurement (see B.2.15). Then the covariance 
(see C.3.4) of q  and r  is estimated by 

( ) ( ) ( )( )
1

1,
1

n

k k
k

s q r q q r r
n n =

= − −
− ∑  (17) 

where qk and rk are the individual observations of the quantities q and r and q  and r  are calculated from the 
observations according to Equation (3). If in fact the observations are uncorrelated, the calculated covariance 
is expected to be near 0. 

Thus the estimated covariance of two correlated input quantities Xi and Xj that are estimated by the means  
iX  and jX determined from independent pairs of repeated simultaneous observations is given by 

u(xi, xj) = ( , ),i js X X  with ( , )i js X X  calculated according to Equation (17). This application of Equation (17) is 
a Type A evaluation of covariance. The estimated correlation coefficient of iX  and jX is obtained from 
Equation (14): r(xi, xj) = ( , )i jr X X = ( , ) ( ) ( )i j i js X X s X s X⎡ ⎤⎣ ⎦ . 

NOTE Examples where it is necessary to use covariances as calculated from Equation (17) are given in H.2 and H.4. 

5.2.4 There may be significant correlation between two input quantities if the same measuring instrument, 
physical measurement standard, or reference datum having a significant standard uncertainty is used in their 
determination. For example, if a certain thermometer is used to determine a temperature correction required in 
the estimation of the value of input quantity Xi, and the same thermometer is used to determine a similar 
temperature correction required in the estimation of input quantity Xj, the two input quantities could be 
significantly correlated. However, if Xi and Xj in this example are redefined to be the uncorrected quantities 
and the quantities that define the calibration curve for the thermometer are included as additional input 
quantities with independent standard uncertainties, the correlation between Xi and Xj is removed. (See F.1.2.3 
and F.1.2.4 for further discussion.) 
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5.2.5 Correlations between input quantities cannot be ignored if present and significant. The associated 
covariances should be evaluated experimentally if feasible by varying the correlated input quantities (see 
C.3.6, Note 3), or by using the pool of available information on the correlated variability of the quantities in 
question (Type B evaluation of covariance). Insight based on experience and general knowledge (see 4.3.1 
and 4.3.2) is especially required when estimating the degree of correlation between input quantities arising 
from the effects of common influences, such as ambient temperature, barometric pressure, and humidity. 
Fortunately, in many cases, the effects of such influences have negligible interdependence and the affected 
input quantities can be assumed to be uncorrelated. However, if they cannot be assumed to be uncorrelated, 
the correlations themselves can be avoided if the common influences are introduced as additional 
independent input quantities as indicated in 5.2.4. 

6 Determining expanded uncertainty 

6.1 Introduction 

6.1.1 Recommendation INC-1 (1980) of the Working Group on the Statement of Uncertainties on which this 
Guide is based (see the Introduction), and Recommendations 1 (CI-1981) and 1 (CI-1986) of the CIPM 
approving and reaffirming INC-1 (1980) (see A.2 and A.3), advocate the use of the combined standard 
uncertainty uc(y) as the parameter for expressing quantitatively the uncertainty of the result of a measurement. 
Indeed, in the second of its recommendations, the CIPM has requested that what is now termed combined 
standard uncertainty uc(y) be used “by all participants in giving the results of all international comparisons or 
other work done under the auspices of the CIPM and Comités Consultatifs”. 

6.1.2 Although uc(y) can be universally used to express the uncertainty of a measurement result, in some 
commercial, industrial, and regulatory applications, and when health and safety are concerned, it is often 
necessary to give a measure of uncertainty that defines an interval about the measurement result that may be 
expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the 
measurand. The existence of this requirement was recognized by the Working Group and led to paragraph 5 
of Recommendation INC-1 (1980). It is also reflected in Recommendation 1 (CI-1986) of the CIPM. 

6.2 Expanded uncertainty 

6.2.1 The additional measure of uncertainty that meets the requirement of providing an interval of the kind 
indicated in 6.1.2 is termed expanded uncertainty and is denoted by U. The expanded uncertainty U is 
obtained by multiplying the combined standard uncertainty uc(y) by a coverage factor k : 

( )cU ku y=  (18) 

The result of a measurement is then conveniently expressed as Y = y ± U, which is interpreted to mean that 
the best estimate of the value attributable to the measurand Y is y, and that y − U to y + U is an interval that 
may be expected to encompass a large fraction of the distribution of values that could reasonably be 
attributed to Y. Such an interval is also expressed as y − U u Y u y + U. 

6.2.2 The terms confidence interval (C.2.27, C.2.28) and confidence level (C.2.29) have specific 
definitions in statistics and are only applicable to the interval defined by U when certain conditions are met, 
including that all components of uncertainty that contribute to uc(y) be obtained from Type A evaluations. Thus, 
in this Guide, the word “confidence” is not used to modify the word “interval” when referring to the interval 
defined by U; and the term “confidence level” is not used in connection with that interval but rather the term 
“level of confidence”. More specifically, U is interpreted as defining an interval about the measurement result 
that encompasses a large fraction p of the probability distribution characterized by that result and its combined 
standard uncertainty, and p is the coverage probability or level of confidence of the interval. 

6.2.3 Whenever practicable, the level of confidence p associated with the interval defined by U should be 
estimated and stated. It should be recognized that multiplying uc(y) by a constant provides no new information 
but presents the previously available information in a different form. However, it should also be recognized 
that in most cases the level of confidence p (especially for values of p near 1) is rather uncertain, not only 
because of limited knowledge of the probability distribution characterized by y and uc(y) (particularly in the 
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extreme portions), but also because of the uncertainty of uc(y) itself (see Note 2 to 2.3.5, 6.3.2, 6.3.3 and 
Annex G, especially G.6.6). 

NOTE For preferred ways of stating the result of a measurement when the measure of uncertainty is uc(y) and when 
it is U, see 7.2.2 and 7.2.4, respectively. 

6.3 Choosing a coverage factor 

6.3.1 The value of the coverage factor k is chosen on the basis of the level of confidence required of the 
interval y − U to y + U. In general, k will be in the range 2 to 3. However, for special applications k may be 
outside this range. Extensive experience with and full knowledge of the uses to which a measurement result 
will be put can facilitate the selection of a proper value of k. 

NOTE Occasionally, one may find that a known correction b for a systematic effect has not been applied to the 
reported result of a measurement, but instead an attempt is made to take the effect into account by enlarging the 
“uncertainty” assigned to the result. This should be avoided; only in very special circumstances should corrections for 
known significant systematic effects not be applied to the result of a measurement (see F.2.4.5 for a specific case and 
how to treat it). Evaluating the uncertainty of a measurement result should not be confused with assigning a safety limit to 
some quantity. 

6.3.2 Ideally, one would like to be able to choose a specific value of the coverage factor k that would 
provide an interval Y = y ± U = y ± kuc(y) corresponding to a particular level of confidence p, such as 95 or 
99 percent; equivalently, for a given value of k, one would like to be able to state unequivocally the level of 
confidence associated with that interval. However, this is not easy to do in practice because it requires 
extensive knowledge of the probability distribution characterized by the measurement result y and its 
combined standard uncertainty uc(y). Although these parameters are of critical importance, they are by 
themselves insufficient for the purpose of establishing intervals having exactly known levels of confidence. 

6.3.3 Recommendation INC-1 (1980) does not specify how the relation between k and p should be 
established. This problem is discussed in Annex G, and a preferred method for its approximate solution is 
presented in G.4 and summarized in G.6.4. However, a simpler approach, discussed in G.6.6, is often 
adequate in measurement situations where the probability distribution characterized by y and uc(y) is 
approximately normal and the effective degrees of freedom of uc(y) is of significant size. When this is the case, 
which frequently occurs in practice, one can assume that taking k = 2 produces an interval having a level of 
confidence of approximately 95 percent, and that taking k = 3 produces an interval having a level of 
confidence of approximately 99 percent. 

NOTE A method for estimating the effective degrees of freedom of uc(y) is given in G.4. Table G.2 of Annex G can 
then be used to help decide if this solution is appropriate for a particular measurement (see G.6.6). 

7 Reporting uncertainty 

7.1 General guidance 

7.1.1 In general, as one moves up the measurement hierarchy, more details are required on how a 
measurement result and its uncertainty were obtained. Nevertheless, at any level of this hierarchy, including 
commercial and regulatory activities in the marketplace, engineering work in industry, lower-echelon 
calibration facilities, industrial research and development, academic research, industrial primary standards 
and calibration laboratories, and the national standards laboratories and the BIPM, all of the information 
necessary for the re-evaluation of the measurement should be available to others who may have need of it. 
The primary difference is that at the lower levels of the hierarchical chain, more of the necessary information 
may be made available in the form of published calibration and test system reports, test specifications, 
calibration and test certificates, instruction manuals, international standards, national standards, and local 
regulations. 

7.1.2 When the details of a measurement, including how the uncertainty of the result was evaluated, are 
provided by referring to published documents, as is often the case when calibration results are reported on a 
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certificate, it is imperative that these publications be kept up-to-date so that they are consistent with the 
measurement procedure actually in use. 

7.1.3 Numerous measurements are made every day in industry and commerce without any explicit report of 
uncertainty. However, many are performed with instruments subject to periodic calibration or legal inspection. 
If the instruments are known to be in conformance with their specifications or with the existing normative 
documents that apply, the uncertainties of their indications may be inferred from these specifications or from 
these normative documents. 

7.1.4 Although in practice the amount of information necessary to document a measurement result depends 
on its intended use, the basic principle of what is required remains unchanged: when reporting the result of a 
measurement and its uncertainty, it is preferable to err on the side of providing too much information rather 
than too little. For example, one should 

a) describe clearly the methods used to calculate the measurement result and its uncertainty from the 
experimental observations and input data; 

b) list all uncertainty components and document fully how they were evaluated; 

c) present the data analysis in such a way that each of its important steps can be readily followed and the 
calculation of the reported result can be independently repeated if necessary; 

d) give all corrections and constants used in the analysis and their sources. 

A test of the foregoing list is to ask oneself “Have I provided enough information in a sufficiently clear manner 
that my result can be updated in the future if new information or data become available?” 

7.2 Specific guidance 

7.2.1 When reporting the result of a measurement, and when the measure of uncertainty is the combined 
standard uncertainty uc(y), one should 

a) give a full description of how the measurand Y is defined; 

b) give the estimate y of the measurand Y and its combined standard uncertainty uc(y); the units of y and 
uc(y) should always be given; 

c) include the relative combined standard uncertainty uc(y)/│y│, │y│ ≠ 0, when appropriate; 

d) give the information outlined in 7.2.7 or refer to a published document that contains it. 

If it is deemed useful for the intended users of the measurement result, for example, to aid in future 
calculations of coverage factors or to assist in understanding the measurement, one may indicate 

⎯ the estimated effective degrees of freedom veff (see G.4); 

⎯ the Type A and Type B combined standard uncertainties ucA(y) and ucB(y) and their estimated effective 
degrees of freedom veffA and veffB (see G.4.1, Note 3). 

7.2.2 When the measure of uncertainty is uc(y), it is preferable to state the numerical result of the 
measurement in one of the following four ways in order to prevent misunderstanding. (The quantity whose 
value is being reported is assumed to be a nominally 100 g standard of mass mS; the words in parentheses 
may be omitted for brevity if uc is defined elsewhere in the document reporting the result.) 

1) “mS = 100,021 47 g with (a combined standard uncertainty) uc = 0,35 mg.” 

2) “mS = 100,021 47(35) g, where the number in parentheses is the numerical value of (the combined 
standard uncertainty) uc referred to the corresponding last digits of the quoted result.” 
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3) “mS = 100,021 47(0,000 35) g, where the number in parentheses is the numerical value of (the combined 
standard uncertainty) uc expressed in the unit of the quoted result.” 

4) “mS = (100,021 47 ± 0,000 35) g, where the number following the symbol ± is the numerical value of (the 
combined standard uncertainty) uc and not a confidence interval.” 

NOTE The ± format should be avoided whenever possible because it has traditionally been used to indicate an 
interval corresponding to a high level of confidence and thus may be confused with expanded uncertainty (see 7.2.4). 
Further, although the purpose of the caveat in 4) is to prevent such confusion, writing Y = y ± uc(y) might still be 
misunderstood to imply, especially if the caveat is accidentally omitted, that an expanded uncertainty with k = 1 is intended 
and that the interval y − uc(y) u Y u y + uc(y) has a specified level of confidence p, namely, that associated with the normal 
distribution (see G.1.3). As indicated in 6.3.2 and Annex G, interpreting uc(y) in this way is usually difficult to justify. 

7.2.3 When reporting the result of a measurement, and when the measure of uncertainty is the expanded 
uncertainty U = kuc(y), one should 

a) give a full description of how the measurand Y is defined; 

b) state the result of the measurement as Y = y ± U and give the units of y and U; 

c) include the relative expanded uncertainty U/│y│, │y│ ≠ 0, when appropriate; 

d) give the value of k used to obtain U [or, for the convenience of the user of the result, give both k and 
uc(y)]; 

e) give the approximate level of confidence associated with the interval y ± U and state how it was 
determined; 

f) give the information outlined in 7.2.7 or refer to a published document that contains it. 

7.2.4 When the measure of uncertainty is U, it is preferable, for maximum clarity, to state the numerical 
result of the measurement as in the following example. (The words in parentheses may be omitted for brevity 
if U, uc, and k are defined elsewhere in the document reporting the result.) 

“mS = (100,021 47 ± 0,000 79) g, where the number following the symbol ± is the numerical value of (an 
expanded uncertainty) U = kuc, with U determined from (a combined standard uncertainty) uc = 0,35 mg 
and (a coverage factor) k = 2,26 based on the t-distribution for v = 9 degrees of freedom, and defines an 
interval estimated to have a level of confidence of 95 percent.” 

7.2.5 If a measurement determines simultaneously more than one measurand, that is, if it provides two or 
more output estimates yi (see H.2, H.3, and H.4), then, in addition to giving yi and uc(yi), give the covariance 
matrix elements u(yi, yj) or the elements r(yi, yj) of the correlation coefficient matrix (C.3.6, Note 2) (and 
preferably both). 

7.2.6 The numerical values of the estimate y and its standard uncertainty uc(y) or expanded uncertainty U 
should not be given with an excessive number of digits. It usually suffices to quote uc(y) and U [as well as the 
standard uncertainties u(xi) of the input estimates xi] to at most two significant digits, although in some cases it 
may be necessary to retain additional digits to avoid round-off errors in subsequent calculations. 

In reporting final results, it may sometimes be appropriate to round uncertainties up rather than to the nearest 
digit. For example, uc(y) = 10,47 mΩ might be rounded up to 11 mΩ. However, common sense should prevail 
and a value such as u(xi) = 28,05 kHz should be rounded down to 28 kHz. Output and input estimates should 
be rounded to be consistent with their uncertainties; for example, if y = 10,057 62 Ω with uc(y) = 27 mΩ, 
y should be rounded to 10,058 Ω. Correlation coefficients should be given with three-digit accuracy if their 
absolute values are near unity. 
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7.2.7 In the detailed report that describes how the result of a measurement and its uncertainty were 
obtained, one should follow the recommendations of 7.1.4 and thus 

a) give the value of each input estimate xi and its standard uncertainty u(xi) together with a description of 
how they were obtained; 

b) give the estimated covariances or estimated correlation coefficients (preferably both) associated with all 
input estimates that are correlated, and the methods used to obtain them; 

c) give the degrees of freedom for the standard uncertainty of each input estimate and how it was obtained; 

d) give the functional relationship Y = f (X1, X2, ..., XN) and, when they are deemed useful, the partial 
derivatives or sensitivity coefficients ∂f /∂xi. However, any such coefficients determined experimentally 
should be given. 

NOTE Since the functional relationship f may be extremely complex or may not exist explicitly but only as a computer 
program, it may not always be possible to give f and its derivatives. The function f may then be described in general terms 
or the program used may be cited by an appropriate reference. In such cases, it is important that it be clear how the 
estimate y of the measurand Y and its combined standard uncertainty uc(y) were obtained. 

8 Summary of procedure for evaluating and expressing uncertainty 

The steps to be followed for evaluating and expressing the uncertainty of the result of a measurement as 
presented in this Guide may be summarized as follows: 

1) Express mathematically the relationship between the measurand Y and the input quantities Xi on which 
Y depends: Y = f (X1, X2, ..., XN). The function f should contain every quantity, including all corrections and 
correction factors, that can contribute a significant component of uncertainty to the result of the 
measurement (see 4.1.1 and 4.1.2). 

2) Determine xi, the estimated value of input quantity Xi, either on the basis of the statistical analysis of 
series of observations or by other means (see 4.1.3). 

3) Evaluate the standard uncertainty u(xi) of each input estimate xi. For an input estimate obtained from the 
statistical analysis of series of observations, the standard uncertainty is evaluated as described in 4.2 
(Type A evaluation of standard uncertainty). For an input estimate obtained by other means, the standard 
uncertainty u(xi) is evaluated as described in 4.3 (Type B evaluation of standard uncertainty). 

4) Evaluate the covariances associated with any input estimates that are correlated (see 5.2). 

5) Calculate the result of the measurement, that is, the estimate y of the measurand Y, from the functional 
relationship f  using for the input quantities Xi the estimates xi obtained in step 2 (see 4.1.4). 

6) Determine the combined standard uncertainty uc(y) of the measurement result y from the standard 
uncertainties and covariances associated with the input estimates, as described in Clause 5. If the 
measurement determines simultaneously more than one output quantity, calculate their covariances (see 
7.2.5, H.2, H.3, and H.4). 

7) If it is necessary to give an expanded uncertainty U, whose purpose is to provide an interval y − U to 
y + U that may be expected to encompass a large fraction of the distribution of values that could 
reasonably be attributed to the measurand Y, multiply the combined standard uncertainty uc(y) by a 
coverage factor k, typically in the range 2 to 3, to obtain U = kuc(y). Select k on the basis of the level of 
confidence required of the interval (see 6.2, 6.3, and especially Annex G, which discusses the selection of 
a value of k, that produces an interval having a level of confidence close to a specified value). 

8) Report the result of the measurement y together with its combined standard uncertainty uc(y) or expanded 
uncertainty U as discussed in 7.2.1 and 7.2.3; use one of the formats recommended in 7.2.2 and 7.2.4. 
Describe, as outlined also in Clause 7, how y and uc(y) or U were obtained. 
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Annex A 
 

Recommendations of Working Group and CIPM 

A.1 Recommendation INC-1 (1980) 

The Working Group on the Statement of Uncertainties (see Foreword) was convened in October 1980 by the 
Bureau International des Poids et Mesures (BIPM) in response to a request of the Comité International des 
Poids et Mesures (CIPM). It prepared a detailed report for consideration by the CIPM that concluded with 
Recommendation INC-1 (1980) [2]. The English translation of this Recommendation is given in 0.7 of this 
Guide and the French text, which is authoritative, is as follows [2]: 

Expression des incertitudes expérimentales 

Recommandation INC-1 (1980) 

1) L'incertitude d'un résultat de mesure comprend généralement plusieurs composantes qui peuvent 
être groupées en deux catégories d'après la méthode utilisée pour estimer leur valeur numérique: 

A. celles qui sont évaluées à l'aide de méthodes statistiques, 

B. celles qui sont évaluées par d'autres moyens. 

Il n'y a pas toujours une correspondance simple entre le classement dans les catégories A ou B et le 
caractère «aléatoire» ou «systématique» utilisé antérieurement pour classer les incertitudes. 
L'expression «incertitude systématique» est susceptible de conduire à des erreurs d'interprétation; 
elle doit être évitée. 

Toute description détaillée de l'incertitude devrait comprendre une liste complète de ses 
composantes et indiquer pour chacune la méthode utilisée pour lui attribuer une valeur numérique. 

2) Les composantes de la catégorie A sont caractérisées par les variances estimées 2
is  (ou les 

«écart-types» estimés si) et les nombres vi de degrés de liberté. Le cas échéant, les covariances 
estimées doivent être données. 

3) Les composantes de la catégorie B devraient être caractérisées par des termes 2
ju  qui puissent être 

considérés comme des approximations des variances correspondantes dont on admet l'existence. 
Les termes 2

ju  peuvent être traités comme des variances et les termes uj comme des écarts-types. 
Le cas échéant, les covariances doivent être traitées de façon analogue. 

4) L'incertitude composée devrait être caractérisée par la valeur obtenue en appliquant la méthode 
usuelle de combinaison des variances. L'incertitude composée ainsi que ses composantes devraient 
être exprimées sous la forme d'«écart-types». 

5) Si pour des utilisations particulières on est amené à multiplier par un facteur l'incertitude composée 
afin d'obtenir une incertitude globale, la valeur numérique de ce facteur doit toujours être donnée. 
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A.2 Recommendation 1 (CI-1981) 

The CIPM reviewed the report submitted to it by the Working Group on the Statement of Uncertainties and 
adopted the following recommendation at its 70th meeting held in October 1981 [3]: 

Recommendation 1 (CI-1981) 

Expression of experimental uncertainties 

The Comité International des Poids et Mesures 

considering 

⎯ the need to find an agreed way of expressing measurement uncertainty in metrology, 

⎯ the effort that has been devoted to this by many organizations over many years, 

⎯ the encouraging progress made in finding an acceptable solution, which has resulted from the 
discussions of the Working Group on the Expression of Uncertainties which met at BIPM in 1980, 

recognizes 

⎯ that the proposals of the Working Group might form the basis of an eventual agreement on the 
expression of uncertainties, 

recommends 

⎯ that the proposals of the Working Group be diffused widely; 

⎯ that BIPM attempt to apply the principles therein to international comparisons carried out under its 
auspices in the years to come; 

⎯ that other interested organizations be encouraged to examine and test these proposals and let their 
comments be known to BIPM; 

⎯ that after two or three years BIPM report back on the application of these proposals. 

A.3 Recommendation 1 (CI-1986) 

The CIPM further considered the matter of the expression of uncertainties at its 75th meeting held in October 
1986 and adopted the following recommendation [4]: 

Recommendation 1 (CI-1986) 

Expression of uncertainties in work carried out under the auspices of the CIPM 

The Comité International des Poids et Mesures, 

considering the adoption by the Working Group on the Statement of Uncertainties of 
Recommendation INC-1 (1980) and the adoption by the CIPM of Recommendation 1 (CI-1981), 

considering that certain members of Comités Consultatifs may want clarification of this Recommendation 
for the purposes of work that falls under their purview, especially for international comparisons, 
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recognizes that paragraph 5 of Recommendation INC-1 (1980) relating to particular applications, 
especially those having commercial significance, is now being considered by a working group of the 
International Standards Organization (ISO) common to the ISO, OIML and IEC, with the concurrence and 
cooperation of the CIPM, 

requests that paragraph 4 of Recommendation INC-1 (1980) should be applied by all participants in 
giving the results of all international comparisons or other work done under the auspices of the CIPM and 
the Comités Consultatifs and that the combined uncertainty of type A and type B uncertainties in terms of 
one standard deviation should be given. 
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Annex B 
 

General metrological terms 

B.1 Source of definitions 

The definitions of the general metrological terms relevant to this Guide that are given here have been taken 
from the International vocabulary of basic and general terms in metrology (abbreviated VIM), second edition, 
1993* [6], published by the International Organization for Standardization (ISO), in the name of the seven 
organizations that supported its development and nominated the experts who prepared it: the Bureau 
International des Poids et Mesures (BIPM), the International Electrotechnical Commission (IEC), the 
International Federation of Clinical Chemistry (IFCC), ISO, the International Union of Pure and Applied 
Chemistry (IUPAC), the International Union of Pure and Applied Physics (IUPAP), and the International 
Organization of Legal Metrology (OIML). The VIM should be the first source consulted for the definitions of 
terms not included either here or in the text. 

NOTE Some basic statistical terms and concepts are given in Annex C, while the terms “true value”, “error”, and 
“uncertainty” are further discussed in Annex D. 

B.2 Definitions 

As in Clause 0, in the definitions that follow, the use of parentheses around certain words of some terms 
means that the words may be omitted if this is unlikely to cause confusion. 

The terms in boldface in some notes are additional metrological terms defined in those notes, either explicitly 
or implicitly (see Reference [6]). 

B.2.1 
(measurable) quantity 
attribute of a phenomenon, body or substance that may be distinguished qualitatively and determined 
quantitatively 

NOTE 1 The term quantity may refer to a quantity in a general sense (see Example 1) or to a particular quantity (see 
Example 2). 

EXAMPLE 1 Quantities in a general sense: length, time, mass, temperature, electrical resistance, amount-of-substance 
concentration. 

EXAMPLE 2 Particular quantities: 

— length of a given rod 

— electrical resistance of a given specimen of wire 

— amount-of-substance concentration of ethanol in a given sample of wine. 

NOTE 2 Quantities that can be placed in order of magnitude relative to one another are called quantities of the same 
kind. 

____________________________  

* Footnote to the 2008 version: 
The third edition of the vocabulary was published in 2008, under the title JCGM 200:2008, International vocabulary of 
metrology — Basic and general concepts and associated terms (VIM). 
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NOTE 3 Quantities of the same kind may be grouped together into categories of quantities, for example: 
— work, heat, energy 
— thickness, circumference, wavelength. 

NOTE 4 Symbols for quantities are given in ISO 31*. 

[VIM:1993, definition 1.1] 

B.2.2 
value (of a quantity) 
magnitude of a particular quantity generally expressed as a unit of measurement multiplied by a number 

EXAMPLE 1 Length of a rod: 5,34 m or 534 cm. 

EXAMPLE 2 Mass of a body: 0,152 kg or 152 g. 

EXAMPLE 3 Amount of substance of a sample of water (H2O): 0,012 mol or 12 mmol. 

NOTE 1 The value of a quantity may be positive, negative or zero. 

NOTE 2 The value of a quantity may be expressed in more than one way. 

NOTE 3 The values of quantities of dimension one are generally expressed as pure numbers. 

NOTE 4 A quantity that cannot be expressed as a unit of measurement multiplied by a number may be expressed by 
reference to a conventional reference scale or to a measurement procedure or to both. 

[VIM:1993, definition 1.18] 

B.2.3 
true value (of a quantity) 
value consistent with the definition of a given particular quantity 

NOTE 1 This is a value that would be obtained by a perfect measurement. 

NOTE 2 True values are by nature indeterminate. 

NOTE 3 The indefinite article “a”, rather than the definite article “the”, is used in conjunction with “true value” because 
there may be many values consistent with the definition of a given particular quantity. 

[VIM:1993, definition 1.19] 

Guide Comment: See Annex D, in particular D.3.5, for the reasons why the term “true value” is not used in this 
Guide and why the terms “true value of a measurand” (or of a quantity) and “value of a measurand” (or of a 
quantity) are viewed as equivalent. 

B.2.4 
conventional true value (of a quantity) 
value attributed to a particular quantity and accepted, sometimes by convention, as having an uncertainty 
appropriate for a given purpose 

EXAMPLE 1 At a given location, the value assigned to the quantity realized by a reference standard may be taken as 
a conventional true value. 

EXAMPLE 2 The CODATA (1986) recommended value for the Avogadro constant: 6,022 136 7 × 1023 mol−1. 

_____________________________ 

* Footnote to the 2008 version: 
The ISO 31 series is under revision as a series of ISO 80000 and IEC 80000 documents. (Some of these documents have 
already been published.) 
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NOTE 1 “Conventional true value” is sometimes called assigned value, best estimate of the value, conventional 
value or reference value. “Reference value”, in this sense, should not be confused with “reference value” in the sense 
used in the Note to VIM:1993, definition 5.7. 

NOTE 2 Frequently, a number of results of measurements of a quantity is used to establish a conventional true value. 

[VIM:1993, definition 1.20] 

Guide Comment: See the Guide Comment to B.2.3. 

B.2.5 
measurement 
set of operations having the object of determining a value of a quantity 

NOTE The operations may be performed automatically. 

[VIM:1993, definition 2.1] 

B.2.6 
principle of measurement 
scientific basis of a measurement 

EXAMPLE 1 The thermoelectric effect applied to the measurement of temperature. 

EXAMPLE 2 The Josephson effect applied to the measurement of electric potential difference. 

EXAMPLE 3 The Doppler effect applied to the measurement of velocity. 

EXAMPLE 4 The Raman effect applied to the measurement of the wave number of molecular vibrations. 

[VIM:1993, definition 2.3] 

B.2.7 
method of measurement 
logical sequence of operations, described generically, used in the performance of measurements 

NOTE Methods of measurement may be qualified in various ways such as: 

— substitution method 

— differential method 

— null method. 

[VIM:1993, definition 2.4] 

B.2.8 
measurement procedure 
set of operations, described specifically, used in the performance of particular measurements according to a 
given method 

NOTE A measurement procedure is usually recorded in a document that is sometimes itself called a “measurement 
procedure” (or a measurement method) and is usually in sufficient detail to enable an operator to carry out a 
measurement without additional information. 

[VIM:1993, definition 2.5] 
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B.2.9 
measurand 
particular quantity subject to measurement 

EXAMPLE Vapour pressure of a given sample of water at 20 °C. 

NOTE The specification of a measurand may require statements about quantities such as time, temperature and 
pressure. 

[VIM:1993, definition 2.6] 

B.2.10 
influence quantity 
quantity that is not the measurand but that affects the result of the measurement 

EXAMPLE 1 Temperature of a micrometer used to measure length. 

EXAMPLE 2 Frequency in the measurement of the amplitude of an alternating electric potential difference. 

EXAMPLE 3 Bilirubin concentration in the measurement of haemoglobin concentration in a sample of human blood 
plasma. 

[VIM:1993, definition 2.7] 

Guide Comment: The definition of influence quantity is understood to include values associated with 
measurement standards, reference materials, and reference data upon which the result of a measurement 
may depend, as well as phenomena such as short-term measuring instrument fluctuations and quantities such 
as ambient temperature, barometric pressure and humidity. 

B.2.11 
result of a measurement 
value attributed to a measurand, obtained by measurement 

NOTE 1 When a result is given, it should be made clear whether it refers to: 

— the indication 

— the uncorrected result 

— the corrected result 

and whether several values are averaged. 

NOTE 2 A complete statement of the result of a measurement includes information about the uncertainty of 
measurement. 

[VIM:1993, definition 3.1] 

B.2.12 
uncorrected result 
result of a measurement before correction for systematic error 

[VIM:1993, definition 3.3] 

B.2.13 
corrected result 
result of a measurement after correction for systematic error 

[VIM:1993, definition 3.4] 
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B.2.14 
accuracy of measurement 
closeness of the agreement between the result of a measurement and a true value of the measurand 

NOTE 1 “Accuracy” is a qualitative concept. 

NOTE 2 The term precision should not be used for “accuracy”. 

[VIM:1993, definition 3.5] 

Guide Comment: See the Guide Comment to B.2.3. 

B.2.15 
repeatability (of results of measurements) 
closeness of the agreement between the results of successive measurements of the same measurand carried 
out under the same conditions of measurement 

NOTE 1 These conditions are called repeatability conditions. 

NOTE 2 Repeatability conditions include: 

— the same measurement procedure 

— the same observer 

— the same measuring instrument, used under the same conditions 

— the same location 

— repetition over a short period of time. 

NOTE 3 Repeatability may be expressed quantitatively in terms of the dispersion characteristics of the results. 

[VIM:1993, definition 3.6] 

B.2.16 
reproducibility (of results of measurements) 
closeness of the agreement between the results of measurements of the same measurand carried out under 
changed conditions of measurement 

NOTE 1 A valid statement of reproducibility requires specification of the conditions changed. 

NOTE 2 The changed conditions may include: 

— principle of measurement 

— method of measurement 

— observer 

— measuring instrument 

— reference standard 

— location 

— conditions of use 

— time. 

NOTE 3 Reproducibility may be expressed quantitatively in terms of the dispersion characteristics of the results. 

NOTE 4 Results are here usually understood to be corrected results. 

[VIM:1993, definition 3.7] 
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B.2.17 
experimental standard deviation 
for a series of n measurements of the same measurand, the quantity s(qk) characterizing the dispersion of the 
results and given by the formula: 

( )
( )2

1

1

n

j
j

k

q q

s q
n

=
−

=
−

∑
 

qk being the result of the kth measurement and q  being the arithmetic mean of the n results considered 

NOTE 1 Considering the series of n values as a sample of a distribution, q  is an unbiased estimate of the mean µq, 
and s2(qk) is an unbiased estimate of the variance σ2, of that distribution. 

NOTE 2 The expression ( )ks q n  is an estimate of the standard deviation of the distribution of q  and is called the 
experimental standard deviation of the mean. 

NOTE 3 “Experimental standard deviation of the mean” is sometimes incorrectly called standard error of the mean. 

NOTE 4 Adapted from VIM:1993, definition 3.8. 

Guide Comment: Some of the symbols used in the VIM have been changed in order to achieve consistency 
with the notation used in 4.2 of this Guide. 

B.2.18 
uncertainty (of measurement) 
parameter, associated with the result of a measurement, that characterizes the dispersion of the values that 
could reasonably be attributed to the measurand 

NOTE 1 The parameter may be, for example, a standard deviation (or a given multiple of it), or the half-width of an 
interval having a stated level of confidence. 

NOTE 2 Uncertainty of measurement comprises, in general, many components. Some of these components may be 
evaluated from the statistical distribution of the results of series of measurements and can be characterized by 
experimental standard deviations. The other components, which can also be characterized by standard deviations, are 
evaluated from assumed probability distributions based on experience or other information. 

NOTE 3 It is understood that the result of the measurement is the best estimate of the value of the measurand, and 
that all components of uncertainty, including those arising from systematic effects, such as components associated with 
corrections and reference standards, contribute to the dispersion. 

[VIM:1993, definition 3.9] 

Guide Comment: It is pointed out in the VIM that this definition and the notes are identical to those in this 
Guide (see 2.2.3). 

B.2.19 
error (of measurement) 
result of a measurement minus a true value of the measurand 

NOTE 1 Since a true value cannot be determined, in practice a conventional true value is used [see VIM:1993, 
definitions 1.19 (B.2.3) and 1.20 (B.2.4)]. 

NOTE 2 When it is necessary to distinguish “error” from “relative error”, the former is sometimes called absolute error 
of measurement. This should not be confused with absolute value of error, which is the modulus of the error. 

[VIM:1993, definition 3.10] 
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Guide Comment: If the result of a measurement depends on the values of quantities other than the 
measurand, the errors of the measured values of these quantities contribute to the error of the result of the 
measurement. Also see the Guide Comment to B.2.22 and to B.2.3. 

B.2.20 
relative error 
error of measurement divided by a true value of the measurand 

NOTE Since a true value cannot be determined, in practice a conventional true value is used [see VIM:1993, 
definitions 1.19 (B.2.3) and 1.20 (B.2.4)]. 

[VIM:1993, definition 3.12] 

Guide Comment: See the Guide Comment to B.2.3. 

B.2.21 
random error 
result of a measurement minus the mean that would result from an infinite number of measurements of the 
same measurand carried out under repeatability conditions 

NOTE 1 Random error is equal to error minus systematic error. 

NOTE 2 Because only a finite number of measurements can be made, it is possible to determine only an estimate of 
random error. 

[VIM:1993, definition 3.13] 

Guide Comment: See the Guide Comment to B.2.22. 

B.2.22 
systematic error 
mean that would result from an infinite number of measurements of the same measurand carried out under 
repeatability conditions minus a true value of the measurand 

NOTE 1 Systematic error is equal to error minus random error. 

NOTE 2 Like true value, systematic error and its causes cannot be completely known. 

NOTE 3 For a measuring instrument, see “bias” (VIM:1993, definition 5.25). 

[VIM:1993, definition 3.14] 

Guide Comment: The error of the result of a measurement (see B.2.19) may often be considered as arising 
from a number of random and systematic effects that contribute individual components of error to the error of 
the result. Also see the Guide Comment to B.2.19 and to B.2.3. 

B.2.23 
correction 
value added algebraically to the uncorrected result of a measurement to compensate for systematic error 

NOTE 1 The correction is equal to the negative of the estimated systematic error. 

NOTE 2 Since the systematic error cannot be known perfectly. the compensation cannot be complete. 

[VIM:1993, definition 3.15] 
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B.2.24 
correction factor 
numerical factor by which the uncorrected result of a measurement is multiplied to compensate for systematic 
error 

NOTE Since the systematic error cannot be known perfectly, the compensation cannot be complete. 

[VIM:1993, definition 3.16] 
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Annex C 
 

Basic statistical terms and concepts 

C.1 Source of definitions 

The definitions of the basic statistical terms given in this annex are taken from International Standard 
ISO 3534-1:1993* [7]. This should be the first source consulted for the definitions of terms not included here. 
Some of these terms and their underlying concepts are elaborated upon in C.3 following the presentation of 
their formal definitions in C.2 in order to facilitate further the use of this Guide. However, C.3, which also 
includes the definitions of some related terms, is not based directly on ISO 3534-1:1993. 

C.2 Definitions 

As in Clause 0 and Annex B, the use of parentheses around certain words of some terms means that the 
words may be omitted if this is unlikely to cause confusion. 

Terms C.2.1 to C.2.14 are defined in terms of the properties of populations. The definitions of terms C.2.15 to 
C.2.31 are related to a set of observations (see Reference [7]). 

C.2.1 
probability 
a real number in the scale 0 to 1 attached to a random event 

NOTE It can be related to a long-run relative frequency of occurrence or to a degree of belief that an event will occur. 
For a high degree of belief, the probability is near 1. 

[ISO 3534-1:1993, definition 1.1] 

C.2.2 
random variable 
variate 
a variable that may take any of the values of a specified set of values and with which is associated a 
probability distribution [ISO 3534-1:1993, definition 1.3 (C.2.3)] 

NOTE 1 A random variable that may take only isolated values is said to be “discrete”. A random variable which may 
take any value within a finite or infinite interval is said to be “continuous”. 

NOTE 2 The probability of an event A is denoted by Pr(A) or P(A). 

[ISO 3534-1:1993, definition 1.2] 

Guide Comment: The symbol Pr(A) is used in this Guide in place of the symbol Pr (A) used in 
ISO 3534-1:1993. 

____________________________  

* Footnote to the 2008 version: 
ISO 3534-1:1993 has been cancelled and replaced by ISO 3534-1:2006. Note that some of the terms and definitions have 
been revised. For further information, see the latest edition. 
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C.2.3 
probability distribution (of a random variable) 
a function giving the probability that a random variable takes any given value or belongs to a given set of 
values 

NOTE The probability on the whole set of values of the random variable equals 1. 

[ISO 3534-1:1993, definition 1.3] 

C.2.4 
distribution function 
a function giving, for every value x, the probability that the random variable X be less than or equal to x: 

( ) ( )PrF x X x= u  

[ISO 3534-1:1993, definition 1.4] 

C.2.5 
probability density function (for a continuous random variable) 
the derivative (when it exists) of the distribution function: 

( ) ( )d df x F x x=  

NOTE f (x) dx is the “probability element”: 

( ) ( )d Pr df x x x X x x= < < +  

[ISO 3534-1:1993, definition 1.5] 

C.2.6 
probability mass function 
a function giving, for each value xi of a discrete random variable X, the probability pi that the random variable 
equals xi: 

( )Pri ip X x= =  

[ISO 3534-1:1993, definition 1.6] 

C.2.7 
parameter 
a quantity used in describing the probability distribution of a random variable 

[ISO 3534-1:1993, definition 1.12] 

C.2.8 
correlation 
the relationship between two or several random variables within a distribution of two or more random variables 

NOTE Most statistical measures of correlation measure only the degree of linear relationship. 

[ISO 3534-1:1993, definition 1.13] 
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C.2.9 
expectation (of a random variable or of a probability distribution) 
expected value 
mean 

1) For a discrete random variable X taking the values xi with the probabilities pi, the expectation, if it exists, is 

( ) i iE X p xµ = =∑  

the sum being extended over all the values xi which can be taken by X. 

2) For a continuous random variable X having the probability density function f (x), the expectation, if it exists, is 

( ) ( ) dE X xf x xµ = = ∫  

the integral being extended over the interval(s) of variation of X. 

[ISO 3534-1:1993, definition 1.18] 

C.2.10 
centred random variable 
a random variable the expectation of which equals zero 

NOTE If the random variable X has an expectation equal to µ, the corresponding centred random variable is (X − µ). 

[ISO 3534-1:1993, definition 1.21] 

C.2.11 
variance (of a random variable or of a probability distribution) 
the expectation of the square of the centred random variable [ISO 3534-1:1993, definition 1.21 (C.2.10)]: 

( ) ( ){ }22 V X E X E Xσ ⎡ ⎤= = −⎣ ⎦  

[ISO 3534-1:1993, definition 1.22] 

C.2.12 
standard deviation (of a random variable or of a probability distribution) 
the positive square root of the variance: 

( )V Xσ =  

[ISO 3534-1:1993, definition 1.23] 

C.2.13 
central moment 2) of order q 
in a univariate distribution, the expectation of the qth power of the centred random variable (X − µ): 

( )qE X µ⎡ ⎤−⎢ ⎥⎣ ⎦
 

NOTE The central moment of order 2 is the variance [ISO 3534-1:1993, definition 1.22 (C.2.11)] of the random 
variable X. 

[ISO 3534-1:1993, definition 1.28] 

                                                      

2) If, in the definition of the moments, the quantities X, X − a, Y, Y − b, etc. are replaced by their absolute values, i.e. │X│, 
│X − a│, │Y│, │Y − b│, etc., other moments called “absolute moments” are defined. 
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C.2.14 
normal distribution 
Laplace-Gauss distribution 
the probability distribution of a continuous random variable X, the probability density function of which is 

( )
21 1exp

22
xf x µ

σσ

⎡ ⎤−⎛ ⎞⎢ ⎥= − ⎜ ⎟⎢ ⎥π ⎝ ⎠⎣ ⎦
 

for −∞ < x < +∞. 

NOTE µ  is the expectation and σ is the standard deviation of the normal distribution. 

[ISO 3534-1:1993, definition 1.37] 

C.2.15 
characteristic 
a property which helps to identify or differentiate between items of a given population 

NOTE The characteristic may be either quantitative (by variables) or qualitative (by attributes). 

[ISO 3534-1:1993, definition 2.2] 

C.2.16 
population 
the totality of items under consideration 

NOTE In the case of a random variable, the probability distribution [ISO 3534-1:1993, definition 1.3 (C.2.3)] is 
considered to define the population of that variable. 

[ISO 3534-1:1993, definition 2.3] 

C.2.17 
frequency 
the number of occurrences of a given type of event or the number of observations falling into a specified class 

[ISO 3534-1:1993, definition 2.11] 

C.2.18 
frequency distribution 
the empirical relationship between the values of a characteristic and their frequencies or their relative 
frequencies 

NOTE The distribution may be graphically presented as a histogram (ISO 3534-1:1993, definition 2.17), bar chart 
(ISO 3534-1:1993, definition 2.18), cumulative frequency polygon (ISO 3534-1:1993, definition 2.19), or as a two-way 
table (ISO 3534-1:1993, definition 2.22). 

[ISO 3534-1:1993, definition 2.15] 

C.2.19 
arithmetic mean 
average 
the sum of values divided by the number of values 

NOTE 1 The term “mean” is used generally when referring to a population parameter and the term “average” when 
referring to the result of a calculation on the data obtained in a sample. 

NOTE 2 The average of a simple random sample taken from a population is an unbiased estimator of the mean of this 
population. However, other estimators, such as the geometric or harmonic mean, or the median or mode, are sometimes 
used. 

[ISO 3534-1:1993, definition 2.26] 
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C.2.20 
variance 
a measure of dispersion, which is the sum of the squared deviations of observations from their average 
divided by one less than the number of observations 

EXAMPLE For n observations x1, x2, ..., xn with average 

( )1 ix n x= ∑  

the variance is 

( )22 1
1 is x x

n
= −

− ∑  

NOTE 1 The sample variance is an unbiased estimator of the population variance. 

NOTE 2 The variance is n/(n − 1) times the central moment of order 2 (see note to ISO 3534-1:1993, definition 2.39). 

[ISO 3534-1:1993, definition 2.33] 

Guide Comment: The variance defined here is more appropriately designated the “sample estimate of the 
population variance”. The variance of a sample is usually defined to be the central moment of order 2 of the 
sample (see C.2.13 and C.2.22). 

C.2.21 
standard deviation 
the positive square root of the variance 

NOTE The sample standard deviation is a biased estimator of the population standard deviation. 

[ISO 3534-1:1993, definition 2.34] 

C.2.22 
central moment of order q 
in a distribution of a single characteristic, the arithmetic mean of the qth power of the difference between the 
observed values and their average x : 

( )1 q
i

i
x x

n
−∑  

where n is the number of observations 

NOTE The central moment of order 1 is equal to zero. 

[ISO 3534-1:1993, definition 2.37] 

C.2.23 
statistic 
a function of the sample random variables 

NOTE A statistic, as a function of random variables, is also a random variable and as such it assumes different 
values from sample to sample. The value of the statistic obtained by using the observed values in this function may be 
used in a statistical test or as an estimate of a population parameter, such as a mean or a standard deviation. 

[ISO 3534-1:1993, definition 2.45] 

C.2.24 
estimation 
the operation of assigning, from the observations in a sample, numerical values to the parameters of a 
distribution chosen as the statistical model of the population from which this sample is taken 
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NOTE A result of this operation may be expressed as a single value [point estimate; see ISO 3534-1:1993, 
definition 2.51 (C.2.26)] or as an interval estimate [see ISO 3534-1:1993, definitions 2.57 (C.2.27) and 2.58 (C.2.28)]. 

[ISO 3534-1:1993, definition 2.49] 

C.2.25 
estimator 
a statistic used to estimate a population parameter 

[ISO 3534-1:1993, definition 2.50] 

C.2.26 
estimate 
the value of an estimator obtained as a result of an estimation 

[ISO 3534-1:1993, definition 2.51] 

C.2.27 
two-sided confidence interval 
when T1 and T2 are two functions of the observed values such that, θ being a population parameter to be 
estimated, the probability Pr(T1 u θ u T2) is at least equal to (1 − α) [where (1 − α ) is a fixed number, positive 
and less than 1], the interval between T1 and T2 is a two-sided (1 − α) confidence interval for θ 

NOTE 1 The limits T1 and T2 of the confidence interval are statistics [ISO 3534-1:1993, definition 2.45 (C.2.23)] and as 
such will generally assume different values from sample to sample. 

NOTE 2 In a long series of samples, the relative frequency of cases where the true value of the population parameter θ 
is covered by the confidence interval is greater than or equal to (1 − α). 

[ISO 3534-1:1993, definition 2.57] 

C.2.28 
one-sided confidence interval 
when T is a function of the observed values such that, θ being a population parameter to be estimated, the 
probability Pr(T  W θ ) [or the probability Pr(T u θ )] is at least equal to (1 − α) [where (1 − α) is a fixed number, 
positive and less than 1], the interval from the smallest possible value of θ up to T (or the interval from T up to 
the largest possible value of θ ) is a one-sided (1 − α) confidence interval for θ 

NOTE 1 The limit T of the confidence interval is a statistic [ISO 3534-1:1993, definition 2.45 (C.2.23)] and as such will 
generally assume different values from sample to sample. 

NOTE 2 See Note 2 of ISO 3534-1:1993, definition 2.57 (C.2.27). 

[ISO 3534-1:1993, definition 2.58] 

C.2.29 
confidence coefficient 
confidence level 
the value (1 − α) of the probability associated with a confidence interval or a statistical coverage interval 
[See ISO 3534-1:1993, definitions 2.57 (C.2.27), 2.58 (C.2.28) and 2.61 (C.2.30).] 

NOTE (1 − α) is often expressed as a percentage. 

[ISO 3534-1:1993, definition 2.59] 

C.2.30 
statistical coverage interval 
an interval for which it can be stated with a given level of confidence that it contains at least a specified 
proportion of the population 
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NOTE 1 When both limits are defined by statistics, the interval is two-sided. When one of the two limits is not finite or 
consists of the boundary of the variable, the interval is one-sided. 

NOTE 2 Also called “statistical tolerance interval”. This term should not be used because it may cause confusion with 
“tolerance interval” which is defined in ISO 3534-2:1993. 

[ISO 3534-1:1993, definition 2.61] 

C.2.31 
degrees of freedom 
in general, the number of terms in a sum minus the number of constraints on the terms of the sum 

[ISO 3534-1:1993, definition 2.85] 

C.3 Elaboration of terms and concepts 

C.3.1 Expectation 

The expectation of a function g(z) over a probability density function p(z) of the random variable z is defined by 

( ) ( ) ( )dE g z g z p z z⎡ ⎤ =⎣ ⎦ ∫  

where, from the definition of p(z), ∫p(z) dz = 1. The expectation of the random variable z, denoted by µz , and 
which is also termed the expected value or the mean of z, is given by 

( ) ( )dz E z z p z zµ ≡ = ∫  

It is estimated statistically by ,z  the arithmetic mean or average of n independent observations zi of the 
random variable z, the probability density function of which is p(z): 

1

1 n

i
i

z z
n =

= ∑  

C.3.2 Variance 

The variance of a random variable is the expectation of its quadratic deviation about its expectation. Thus the 
variance of random variable z with probability density function p(z) is given by 

( ) ( ) ( )22 dzz z p z zσ µ= −∫  

where µz is the expectation of z. The variance σ 2(z) may be estimated by 

( ) ( )22

1

1
1

n

i j
j

s z z z
n =

= −
− ∑  

where 

1

1 n

i
i

z z
n =

= ∑  

and the zi are n independent observations of z. 

NOTE 1 The factor n − 1 in the expression for s2(zi) arises from the correlation between zi and z  and reflects the fact 
that there are only n − 1 independent items in the set { }iz z− . 
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NOTE 2 If the expectation µz of z is known, the variance may be estimated by 

( ) ( )22

1

1 n

i i z
i

s z z
n

µ
=

= −∑  

The variance of the arithmetic mean or average of the observations, rather than the variance of the individual 
observations, is the proper measure of the uncertainty of a measurement result. The variance of a variable z 
should be carefully distinguished from the variance of the mean z . The variance of the arithmetic mean of a 
series of n independent observations zi of z is given by 2 2( ) ( )iz z nσ σ=  and is estimated by the experimental 
variance of the mean 

( ) ( )
( ) ( )

2
22

1

1
1

n
i

i
i

s z
s z z z

n n n =
= = −

− ∑  

C.3.3 Standard deviation 

The standard deviation is the positive square root of the variance. Whereas a Type A standard uncertainty is 
obtained by taking the square root of the statistically evaluated variance, it is often more convenient when 
determining a Type B standard uncertainty to evaluate a nonstatistical equivalent standard deviation first and 
then to obtain the equivalent variance by squaring the standard deviation. 

C.3.4 Covariance 

The covariance of two random variables is a measure of their mutual dependence. The covariance of random 
variables y and z is defined by 

( ) ( ) ( ) ( ){ }cov , cov ,y z z y E y E y z E z⎡ ⎤ ⎡ ⎤= = − −⎣ ⎦ ⎣ ⎦  

which leads to 

( ) ( )
( )( ) ( )

( )

cov , cov ,

, d d

, d d

y z

y z

y z z y

y z p y z y z

y z p y z y z

µ µ

µ µ

=

= − −

= −

∫∫
∫∫

 

where p(y, z) is the joint probability density function of the two variables y and z. The covariance cov(y, z) [also 
denoted by υ(y, z)] may be estimated by s(yi, zi) obtained from n independent pairs of simultaneous 
observations yi and zi of y and z, 

( ) ( )( )
1

1,
1

n

i i j j
j

s y z y y z z
n =

= − −
− ∑  

where 

1

1 n

i
i

y y
n =

= ∑  

and 

1

1 n

i
i

z z
n =

= ∑  

NOTE The estimated covariance of the two means y  and z  is given by ( , ) ( , )i is y z s y z n= . 



JCGM 100:2008 

 

© JCGM 2008 – All rights reserved  47
 

C.3.5 Covariance matrix 

For a multivariate probability distribution, the matrix V  with elements equal to the variances and covariances 
of the variables is termed the covariance matrix. The diagonal elements, υ(z, z) ≡ σ 2(z) or s(zi, zi) ≡ s2(zi), are 
the variances, while the off-diagonal elements, υ(y, z) or s(yi, zi), are the covariances. 

C.3.6 Correlation coefficient 

The correlation coefficient is a measure of the relative mutual dependence of two variables, equal to the ratio 
of their covariances to the positive square root of the product of their variances. Thus 

( ) ( ) ( )
( ) ( )

( )
( ) ( )

, ,
, ,

, ,

y z y z
y z z y

y zy y z z

υ υ
ρ ρ

σ συ υ
= = =  

with estimates 

( ) ( ) ( )
( ) ( )

( )
( ) ( )

, ,
, ,

, ,
i i i i

i i i i
i ii i i i

s y z s y z
r y z r z y

s y s zs y y s z z
= = =  

The correlation coefficient is a pure number such that −1 u ρ u +1 or −1 u r(yi, zi) u +1. 

NOTE 1 Because ρ and r are pure numbers in the range −1 to +1 inclusive, while covariances are usually quantities 
with inconvenient physical dimensions and magnitudes, correlation coefficients are generally more useful than 
covariances. 

NOTE 2 For multivariate probability distributions, the correlation coefficient matrix is usually given in place of the 
covariance matrix. Since ρ(y, y) = 1 and r(yi, yi) = 1, the diagonal elements of this matrix are unity. 

NOTE 3 If the input estimates xi and xj are correlated (see 5.2.2) and if a change δi in xi produces a change δj in xj, 
then the correlation coefficient associated with xi and xj is estimated approximately by 

( ) ( ) ( ),i j i j j ir x x u x u xδ δ⎡ ⎤≈ ⎣ ⎦  

This relation can serve as a basis for estimating correlation coefficients experimentally. It can also be used to calculate the 
approximate change in one input estimate due to a change in another if their correlation coefficient is known. 

C.3.7 Independence 

Two random variables are statistically independent if their joint probability distribution is the product of their 
individual probability distributions. 

NOTE If two random variables are independent, their covariance and correlation coefficient are zero, but the 
converse is not necessarily true. 

C.3.8 The t-distribution; Student's distribution 

The t-distribution or Student's distribution is the probability distribution of a continuous random variable t 
whose probability density function is 

( )
( )1 22

1
1 2, 1 ,

2

vv
tp t v tv vv

− ++⎛ ⎞Γ⎜ ⎟ ⎛ ⎞⎝ ⎠= +⎜ ⎟ − < < +⎜ ⎟⎛ ⎞π ⎝ ⎠Γ ⎜ ⎟
⎝ ⎠

∞ ∞  

where Γ is the gamma function and v > 0. The expectation of the t-distribution is zero and its variance is 
v/(v − 2) for v > 2. As v → ∞, the t-distribution approaches a normal distribution with µ = 0 and σ  = 1 (see 
C.2.14). 
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The probability distribution of the variable ( ) ( )zz s zµ−  is the t-distribution if the random variable z is normally 
distributed with expectation µz, where z  is the arithmetic mean of n independent observations zi of z, s(zi) is 
the experimental standard deviation of the n observations, and ( ) ( )is z s z n=  is the experimental standard 
deviation of the mean z  with v = n − 1 degrees of freedom. 
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Annex D 
 

“True” value, error, and uncertainty 

The term true value (B.2.3) has traditionally been used in publications on uncertainty but not in this Guide for 
the reasons presented in this annex. Because the terms “measurand”, “error”, and “uncertainty” are frequently 
misunderstood, this annex also provides additional discussion of the ideas underlying them to supplement the 
discussion given in Clause 3. Two figures are presented to illustrate why the concept of uncertainty adopted in 
this Guide is based on the measurement result and its evaluated uncertainty rather than on the unknowable 
quantities “true” value and error. 

D.1 The measurand 

D.1.1 The first step in making a measurement is to specify the measurand — the quantity to be measured; 
the measurand cannot be specified by a value but only by a description of a quantity. However, in principle, a 
measurand cannot be completely described without an infinite amount of information. Thus, to the extent that 
it leaves room for interpretation, incomplete definition of the measurand introduces into the uncertainty of the 
result of a measurement a component of uncertainty that may or may not be significant relative to the 
accuracy required of the measurement. 

D.1.2 Commonly, the definition of a measurand specifies certain physical states and conditions. 

EXAMPLE The velocity of sound in dry air of composition (mole fraction) N2 = 0,780 8, O2 = 0,209 5, Ar = 0,009 35, 
and CO2 = 0,000 35 at the temperature T = 273,15 K and pressure p = 101 325 Pa. 

D.2 The realized quantity 

D.2.1 Ideally, the quantity realized for measurement would be fully consistent with the definition of the 
measurand. Often, however, such a quantity cannot be realized and the measurement is performed on a 
quantity that is an approximation of the measurand. 

D.3 The “true” value and the corrected value 

D.3.1 The result of the measurement of the realized quantity is corrected for the difference between that 
quantity and the measurand in order to predict what the measurement result would have been if the realized 
quantity had in fact fully satisfied the definition of the measurand. The result of the measurement of the 
realized quantity is also corrected for all other recognized significant systematic effects. Although the final 
corrected result is sometimes viewed as the best estimate of the “true” value of the measurand, in reality the 
result is simply the best estimate of the value of the quantity intended to be measured. 

D.3.2 As an example, suppose that the measurand is the thickness of a given sheet of material at a 
specified temperature. The specimen is brought to a temperature near the specified temperature and its 
thickness at a particular place is measured with a micrometer. The thickness of the material at that place and 
temperature, under the pressure applied by the micrometer, is the realized quantity. 

D.3.3 The temperature of the material at the time of the measurement and the applied pressure are 
determined. The uncorrected result of the measurement of the realized quantity is then corrected by taking 
into account the calibration curve of the micrometer, the departure of the temperature of the specimen from 
the specified temperature, and the slight compression of the specimen under the applied pressure. 
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D.3.4 The corrected result may be called the best estimate of the “true” value, “true” in the sense that it is 
the value of a quantity that is believed to satisfy fully the definition of the measurand; but had the micrometer 
been applied to a different part of the sheet of material, the realized quantity would have been different with a 
different “true” value. However, that “true” value would be consistent with the definition of the measurand 
because the latter did not specify that the thickness was to be determined at a particular place on the sheet. 
Thus in this case, because of an incomplete definition of the measurand, the “true” value has an uncertainty 
that can be evaluated from measurements made at different places on the sheet. At some level, every 
measurand has such an “intrinsic” uncertainty that can in principle be estimated in some way. This is the 
minimum uncertainty with which a measurand can be determined, and every measurement that achieves such 
an uncertainty may be viewed as the best possible measurement of the measurand. To obtain a value of the 
quantity in question having a smaller uncertainty requires that the measurand be more completely defined. 

NOTE 1 In the example, the measurand's specification leaves many other matters in doubt that might conceivably 
affect the thickness: the barometric pressure, the humidity, the attitude of the sheet in the gravitational field, the way it is 
supported, etc. 

NOTE 2 Although a measurand should be defined in sufficient detail that any uncertainty arising from its incomplete 
definition is negligible in comparison with the required accuracy of the measurement, it must be recognized that this may 
not always be practicable. The definition may, for example, be incomplete because it does not specify parameters that 
may have been assumed, unjustifiably, to have negligible effect; or it may imply conditions that can never be fully met and 
whose imperfect realization is difficult to take into account. For instance, in the example of D.1.2, the velocity of sound 
implies infinite plane waves of vanishingly small amplitude. To the extent that the measurement does not meet these 
conditions, diffraction and nonlinear effects need to be considered. 

NOTE 3 Inadequate specification of the measurand can lead to discrepancies between the results of measurements of 
ostensibly the same quantity carried out in different laboratories. 

D.3.5 The term “true value of a measurand” or of a quantity (often truncated to “true value”) is avoided in 
this Guide because the word “true” is viewed as redundant. “Measurand” (see B.2.9) means “particular 
quantity subject to measurement”, hence “value of a measurand” means “value of a particular quantity subject 
to measurement”. Since “particular quantity” is generally understood to mean a definite or specified quantity 
(see B.2.1, Note 1), the adjective “true” in “true value of a measurand” (or in “true value of a quantity”) is 
unnecessary — the “true” value of the measurand (or quantity) is simply the value of the measurand (or 
quantity). In addition, as indicated in the discussion above, a unique “true” value is only an idealized concept. 

D.4 Error 

A corrected measurement result is not the value of the measurand — that is, it is in error — because of 
imperfect measurement of the realized quantity due to random variations of the observations (random effects), 
inadequate determination of the corrections for systematic effects, and incomplete knowledge of certain 
physical phenomena (also systematic effects). Neither the value of the realized quantity nor the value of the 
measurand can ever be known exactly; all that can be known is their estimated values. In the example above, 
the measured thickness of the sheet may be in error, that is, may differ from the value of the measurand (the 
thickness of the sheet), because each of the following may combine to contribute an unknown error to the 
measurement result: 

a) slight differences between the indications of the micrometer when it is repeatedly applied to the same 
realized quantity; 

b) imperfect calibration of the micrometer; 

c) imperfect measurement of the temperature and of the applied pressure; 

d) incomplete knowledge of the effects of temperature, barometric pressure, and humidity on the specimen 
or the micrometer or both. 
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D.5 Uncertainty 

D.5.1 Whereas the exact values of the contributions to the error of a result of a measurement are unknown 
and unknowable, the uncertainties associated with the random and systematic effects that give rise to the 
error can be evaluated. But, even if the evaluated uncertainties are small, there is still no guarantee that the 
error in the measurement result is small; for in the determination of a correction or in the assessment of 
incomplete knowledge, a systematic effect may have been overlooked because it is unrecognized. Thus the 
uncertainty of a result of a measurement is not necessarily an indication of the likelihood that the 
measurement result is near the value of the measurand; it is simply an estimate of the likelihood of nearness 
to the best value that is consistent with presently available knowledge. 

D.5.2 Uncertainty of measurement is thus an expression of the fact that, for a given measurand and a given 
result of measurement of it, there is not one value but an infinite number of values dispersed about the result 
that are consistent with all of the observations and data and one's knowledge of the physical world, and that 
with varying degrees of credibility can be attributed to the measurand. 

D.5.3 It is fortunate that in many practical measurement situations, much of the discussion of this annex 
does not apply. Examples are when the measurand is adequately well defined; when standards or instruments 
are calibrated using well-known reference standards that are traceable to national standards; and when the 
uncertainties of the calibration corrections are insignificant compared to the uncertainties arising from random 
effects on the indications of instruments, or from a limited number of observations (see E.4.3). Nevertheless, 
incomplete knowledge of influence quantities and their effects can often contribute significantly to the 
uncertainty of the result of a measurement. 

D.6 Graphical representation 

D.6.1 Figure D.1 depicts some of the ideas discussed in Clause 3 of this Guide and in this annex. It 
illustrates why the focus of this Guide is uncertainty and not error. The exact error of a result of a 
measurement is, in general, unknown and unknowable. All one can do is estimate the values of input 
quantities, including corrections for recognized systematic effects, together with their standard uncertainties 
(estimated standard deviations), either from unknown probability distributions that are sampled by means of 
repeated observations, or from subjective or a priori distributions based on the pool of available information; 
and then calculate the measurement result from the estimated values of the input quantities and the combined 
standard uncertainty of that result from the standard uncertainties of those estimated values. Only if there is a 
sound basis for believing that all of this has been done properly, with no significant systematic effects having 
been overlooked, can one assume that the measurement result is a reliable estimate of the value of the 
measurand and that its combined standard uncertainty is a reliable measure of its possible error. 

NOTE 1 In Figure D.1 a), the observations are shown as a histogram for illustrative purposes [see 4.4.3 and 
Figure 1 b)]. 

NOTE 2 The correction for an error is equal to the negative of the estimate of the error. Thus in Figure D.1, and in 
Figure D.2 as well, an arrow that illustrates the correction for an error is equal in length but points in the opposite direction 
to the arrow that would have illustrated the error itself, and vice versa. The text of the figure makes clear if a particular 
arrow illustrates a correction or an error. 

D.6.2 Figure D.2 depicts some of the same ideas illustrated in Figure D.1 but in a different way. Moreover, it 
also depicts the idea that there can be many values of the measurand if the definition of the measurand is 
incomplete [entry g) of Figure D.2]. The uncertainty arising from this incompleteness of definition as measured 
by the variance is evaluated from measurements of multiple realizations of the measurand, using the same 
method, instruments, etc. (see D.3.4). 

NOTE In the column headed “Variance”, the variances are understood to be the variances 2( )iu y  defined in 
Equation (11a) in 5.1.3; hence they add linearly as shown. 
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Figure D.1 — Graphical illustration of value, error, and uncertainty 
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Figure D.2 — Graphical illustration of values, error, and uncertainty 
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Annex E 
 

Motivation and basis for Recommendation INC-1 (1980) 

This annex gives a brief discussion of both the motivation and statistical basis for Recommendation 
INC-1 (1980) of the Working Group on the Statement of Uncertainties upon which this Guide rests. For further 
discussion, see References [1, 2, 11, 12]. 

E.1 “Safe”, “random”, and “systematic” 

E.1.1 This Guide presents a widely applicable method for evaluating and expressing uncertainty in 
measurement. It provides a realistic rather than a “safe” value of uncertainty based on the concept that there 
is no inherent difference between an uncertainty component arising from a random effect and one arising from 
a correction for a systematic effect (see 3.2.2 and 3.2.3). The method stands, therefore, in contrast to certain 
older methods that have the following two ideas in common. 

E.1.2 The first idea is that the uncertainty reported should be “safe” or “conservative”, meaning that it must 
never err on the side of being too small. In fact, because the evaluation of the uncertainty of a measurement 
result is problematic, it was often made deliberately large. 

E.1.3 The second idea is that the influences that give rise to uncertainty were always recognizable as either 
“random” or “systematic” with the two being of different natures; the uncertainties associated with each were 
to be combined in their own way and were to be reported separately (or when a single number was required, 
combined in some specified way). In fact, the method of combining uncertainties was often designed to satisfy 
the safety requirement. 

E.2 Justification for realistic uncertainty evaluations 

E.2.1 When the value of a measurand is reported, the best estimate of its value and the best evaluation of 
the uncertainty of that estimate must be given, for if the uncertainty is to err, it is not normally possible to 
decide in which direction it should err “safely”. An understatement of uncertainties might cause too much trust 
to be placed in the values reported, with sometimes embarrassing or even disastrous consequences. A 
deliberate overstatement of uncertainties could also have undesirable repercussions. It could cause users of 
measuring equipment to purchase instruments that are more expensive than they need, or it could cause 
costly products to be discarded unnecessarily or the services of a calibration laboratory to be rejected. 

E.2.2 That is not to say that those using a measurement result could not apply their own multiplicative factor 
to its stated uncertainty in order to obtain an expanded uncertainty that defines an interval having a specified 
level of confidence and that satisfies their own needs, nor in certain circumstances that institutions providing 
measurement results could not routinely apply a factor that provides a similar expanded uncertainty that 
meets the needs of a particular class of users of their results. However, such factors (always to be stated) 
must be applied to the uncertainty as determined by a realistic method, and only after the uncertainty has 
been so determined, so that the interval defined by the expanded uncertainty has the level of confidence 
required and the operation may be easily reversed. 

E.2.3 Those engaged in measurement often must incorporate in their analyses the results of measurements 
made by others, with each of these other results possessing an uncertainty of its own. In evaluating the 
uncertainty of their own measurement result, they need to have a best value, not a “safe” value, of the 
uncertainty of each of the results incorporated from elsewhere. Additionally, there must be a logical and 
simple way in which these imported uncertainties can be combined with the uncertainties of their own 
observations to give the uncertainty of their own result. Recommendation INC-1 (1980) provides such a way. 
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E.3 Justification for treating all uncertainty components identically 

The focus of the discussion of this subclause is a simple example that illustrates how this Guide treats 
uncertainty components arising from random effects and from corrections for systematic effects in exactly the 
same way in the evaluation of the uncertainty of the result of a measurement. It thus exemplifies the viewpoint 
adopted in this Guide and cited in E.1.1, namely, that all components of uncertainty are of the same nature 
and are to be treated identically. The starting point of the discussion is a simplified derivation of the 
mathematical expression for the propagation of standard deviations, termed in this Guide the law of 
propagation of uncertainty. 

E.3.1 Let the output quantity z = f (w1, w2, ..., wN) depend on N input quantities w1, w2, ..., wN, where each wi 
is described by an appropriate probability distribution. Expansion of f about the expectations of the wi, 
E(wi) ≡ µi, in a first-order Taylor series yields for small deviations of z about µz in terms of small deviations of 
wi about µi, 

( )
1

N

z i i
ii

fz w
w

µ µ
=

∂− = −
∂∑  (E.1) 

where all higher-order terms are assumed to be negligible and µz = f (µ1, µ2, ..., µN). The square of the 
deviation z − µz is then given by 

( ) ( )
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N

z i i
ii

fz w
w

µ µ
=

⎛ ⎞∂⎜ ⎟− = −
⎜ ⎟∂⎝ ⎠
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which may be written as 
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∑ ∑ ∑  (E.2b) 

The expectation of the squared deviation (z − µz)2 is the variance of z, that is, 2 2[( ) ]z zE z µ σ− = , and thus 
Equation (E.2b) leads to 

2 1
2 2

1 1 1
2

N N N

z i i j ij
i i ji i j i

f f f
w w w

σ σ σ σ ρ
−

= = = +

⎛ ⎞∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂⎝ ⎠
∑ ∑ ∑  (E.3) 

In this expression, 2 2[( ) ]i i iE wσ µ= −  is the variance of wi and ( ) ( )1/22 2,ij i j i jw wρ υ σ σ=  is the correlation 
coefficient of wi and wj, where υ(wi, wj) = E[(wi − µi)(wj − µj)] is the covariance of wi and wj. 

NOTE 1 2
zσ  and 2

iσ  are, respectively, the central moments of order 2 (see C.2.13 and C.2.22) of the probability 
distributions of z and wi . A probability distribution may be completely characterized by its expectation, variance, and 
higher-order central moments. 

NOTE 2 Equation (13) in 5.2.2 [together with Equation (15)], which is used to calculate combined standard uncertainty, 
is identical to Equation (E.3) except that Equation (13) is expressed in terms of estimates of the variances, standard 
deviations, and correlation coefficients. 

E.3.2 In the traditional terminology, Equation (E.3) is often called the “general law of error propagation”, an 
appellation that is better applied to an expression of the form 1( / )N

i i iz f w w=∆ = ∂ ∂ ∆∑ , where ∆z is the change 
in z due to (small) changes ∆wi in the wi [see Equation (E.8)]. In fact, it is appropriate to call Equation (E.3) the 
law of propagation of uncertainty as is done in this Guide because it shows how the uncertainties of the input 
quantities wi, taken equal to the standard deviations of the probability distributions of the wi, combine to give 
the uncertainty of the output quantity z if that uncertainty is taken equal to the standard deviation of the 
probability distribution of z. 
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E.3.3 Equation (E.3) also applies to the propagation of multiples of standard deviations, for if each standard 
deviation σi is replaced by a multiple kσi, with the same k for each σi, the standard deviation of the output 
quantity z is replaced by kσz. However, it does not apply to the propagation of confidence intervals. If each σi 
is replaced with a quantity δi that defines an interval corresponding to a given level of confidence p, the 
resulting quantity for z, δz, will not define an interval corresponding to the same value of p unless all of the wi 
are described by normal distributions. No such assumptions regarding the normality of the probability 
distributions of the quantities wi are implied in Equation (E.3). More specifically, if in Equation (10) in 5.1.2 
each standard uncertainty u(xi) is evaluated from independent repeated observations and multiplied by the 
t-factor appropriate for its degrees of freedom for a particular value of p (say p = 95 percent), the uncertainty of 
the estimate y will not define an interval corresponding to that value of p (see G.3 and G.4). 

NOTE The requirement of normality when propagating confidence intervals using Equation (E.3) may be one of the 
reasons for the historic separation of the components of uncertainty derived from repeated observations, which were 
assumed to be normally distributed, from those that were evaluated simply as upper and lower bounds. 

E.3.4 Consider the following example: z depends on only one input quantity w, z = f (w), where w is 
estimated by averaging n values wk of w; these n values are obtained from n independent repeated 
observations qk of a random variable q; and wk and qk are related by 

k kw qα β= +  (E.4) 

Here α is a constant “systematic” offset or shift common to each observation, and β  is a common scale factor. 
The offset and the scale factor, although fixed during the course of the observations, are assumed to be 
characterized by a priori probability distributions, with α  and β  the best estimates of the expectations of these 
distributions. 

The best estimate of w is the arithmetic mean or average w  obtained from 

( )
1 1

1 1n n

k k
k k

w w q
n n

α β
= =

= = +∑ ∑  (E.5) 

The quantity z is then estimated by 1 2( ) ( , , , , ..., )nf w f q q qα β=  and the estimate u2(z) of its variance σ 2(z) is 
obtained from Equation (E.3). If for simplicity it is assumed that z = w so that the best estimate of z is 

( )z f w w= = , then the estimate u2(z) can be readily found. Noting from Equation (E.5) that 

1f
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∂ =
∂
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1
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f q q
nβ =

∂ = =
∂ ∑ , 

and 

k

f
q n

β∂ =
∂

, 

denoting the estimated variances of α  and β  by u2(α) and u2(β ), respectively, and assuming that the 
individual observations are uncorrelated, one finds from Equation (E.3) 

( ) ( ) ( ) ( )2
2 2 2 2 2 ks q

u z u q u
n

α β β= + +  (E.6) 

where s2(qk) is the experimental variance of the observations qk calculated according to Equation (4) in 4.2.2, 
and 2 2( ) ( )ks q n s q=  is the experimental variance of the mean q  [Equation (5) in 4.2.3]. 
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E.3.5 In the traditional terminology, the third term on the right-hand side of Equation (E.6) is called a 
“random” contribution to the estimated variance u2(z) because it normally decreases as the number of 
observations n increases, while the first two terms are called “systematic” contributions because they do not 
depend on n. 

Of more significance, in some traditional treatments of measurement uncertainty, Equation (E.6) is questioned 
because no distinction is made between uncertainties arising from systematic effects and those arising from 
random effects. In particular, combining variances obtained from a priori probability distributions with those 
obtained from frequency-based distributions is deprecated because the concept of probability is considered to 
be applicable only to events that can be repeated a large number of times under essentially the same 
conditions, with the probability p of an event (0 u p u 1) indicating the relative frequency with which the event 
will occur. 

In contrast to this frequency-based point of view of probability, an equally valid viewpoint is that probability is a 
measure of the degree of belief that an event will occur [13, 14]. For example, suppose one has a chance of 
winning a small sum of money D and one is a rational bettor. One's degree of belief in event A occurring is 
p = 0,5 if one is indifferent to these two betting choices: 

1) receiving D if event A occurs but nothing if it does not occur; 

2) receiving D if event A does not occur but nothing if it does occur. 

Recommendation INC-1 (1980) upon which this Guide rests implicitly adopts such a viewpoint of probability 
since it views expressions such as Equation (E.6) as the appropriate way to calculate the combined standard 
uncertainty of a result of a measurement. 

E.3.6 There are three distinct advantages to adopting an interpretation of probability based on degree of 
belief, the standard deviation (standard uncertainty), and the law of propagation of uncertainty [Equation (E.3)] 
as the basis for evaluating and expressing uncertainty in measurement, as has been done in this Guide: 

a) the law of propagation of uncertainty allows the combined standard uncertainty of one result to be readily 
incorporated in the evaluation of the combined standard uncertainty of another result in which the first is 
used; 

b) the combined standard uncertainty can serve as the basis for calculating intervals that correspond in a 
realistic way to their required levels of confidence; and 

c) it is unnecessary to classify components as “random” or “systematic” (or in any other manner) when 
evaluating uncertainty because all components of uncertainty are treated in the same way. 

Benefit c) is highly advantageous because such categorization is frequently a source of confusion; an 
uncertainty component is not either “random” or “systematic”. Its nature is conditioned by the use made of the 
corresponding quantity, or more formally, by the context in which the quantity appears in the mathematical 
model that describes the measurement. Thus, when its corresponding quantity is used in a different context, a 
“random” component may become a “systematic” component, and vice versa. 

E.3.7 For the reason given in c) above, Recommendation INC-1 (1980) does not classify components of 
uncertainty as either “random” or “systematic”. In fact, as far as the calculation of the combined standard 
uncertainty of a measurement result is concerned, there is no need to classify uncertainty components and 
thus no real need for any classificational scheme. Nonetheless, since convenient labels can sometimes be 
helpful in the communication and discussion of ideas, Recommendation INC-1 (1980) does provide a scheme 
for classifying the two distinct methods by which uncertainty components may be evaluated, “A” and “B” (see 
0.7, 2.3.2, and 2.3.3). 

Classifying the methods used to evaluate uncertainty components avoids the principal problem associated 
with classifying the components themselves, namely, the dependence of the classification of a component on 
how the corresponding quantity is used. However, classifying the methods rather than the components does 
not preclude gathering the individual components evaluated by the two methods into specific groups for a 
particular purpose in a given measurement, for example, when comparing the experimentally observed and 
theoretically predicted variability of the output values of a complex measurement system (see 3.4.3). 
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E.4 Standard deviations as measures of uncertainty 

E.4.1 Equation (E.3) requires that no matter how the uncertainty of the estimate of an input quantity is 
obtained, it must be evaluated as a standard uncertainty, that is, as an estimated standard deviation. If some 
“safe” alternative is evaluated instead, it cannot be used in Equation (E.3). In particular, if the “maximum error 
bound” (the largest conceivable deviation from the putative best estimate) is used in Equation (E.3), the 
resulting uncertainty will have an ill-defined meaning and will be unusable by anyone wishing to incorporate it 
into subsequent calculations of the uncertainties of other quantities (see E.3.3). 

E.4.2 When the standard uncertainty of an input quantity cannot be evaluated by an analysis of the results 
of an adequate number of repeated observations, a probability distribution must be adopted based on 
knowledge that is much less extensive than might be desirable. That does not, however, make the distribution 
invalid or unreal; like all probability distributions, it is an expression of what knowledge exists. 

E.4.3 Evaluations based on repeated observations are not necessarily superior to those obtained by other 
means. Consider ( )s q , the experimental standard deviation of the mean of n independent observations qk of a 
normally distributed random variable q [see Equation (5) in 4.2.3]. The quantity ( )s q  is a statistic (see C.2.23) 
that estimates ( )qσ , the standard deviation of the probability distribution of q , that is, the standard deviation 
of the distribution of the values of q  that would be obtained if the measurement were repeated an infinite 
number of times. The variance 2[ ( )]s qσ  of ( )s q  is given, approximately, by 

( ) ( ) ( )2 2 2s q q vσ σ⎡ ⎤ ≈⎣ ⎦  (E.7) 

where v = n − 1 is the degrees of freedom of ( )s q  (see G.3.3). Thus the relative standard deviation of ( )s q , 
which is given by the ratio [ ( )] ( )s q qσ σ  and which can be taken as a measure of the relative uncertainty of 

( )s q , is approximately [2(n − 1)]−1/2. This “uncertainty of the uncertainty” of q , which arises from the purely 
statistical reason of limited sampling, can be surprisingly large; for n = 10 observations it is 24 percent. This 
and other values are given in Table E.1, which shows that the standard deviation of a statistically estimated 
standard deviation is not negligible for practical values of n. One may therefore conclude that Type A 
evaluations of standard uncertainty are not necessarily more reliable than Type B evaluations, and that in 
many practical measurement situations where the number of observations is limited, the components obtained 
from Type B evaluations may be better known than the components obtained from Type A evaluations. 

E.4.4 It has been argued that, whereas the uncertainties associated with the application of a particular 
method of measurement are statistical parameters characterizing random variables, there are instances of a 
“truly systematic effect” whose uncertainty must be treated differently. An example is an offset having an 
unknown fixed value that is the same for every determination by the method due to a possible imperfection in 
the very principle of the method itself or one of its underlying assumptions. But if the possibility of such an 
offset is acknowledged to exist and its magnitude is believed to be possibly significant, then it can be 
described by a probability distribution, however simply constructed, based on the knowledge that led to the 
conclusion that it could exist and be significant. Thus, if one considers probability to be a measure of the 
degree of belief that an event will occur, the contribution of such a systematic effect can be included in the 
combined standard uncertainty of a measurement result by evaluating it as a standard uncertainty of an 
a priori probability distribution and treating it in the same manner as any other standard uncertainty of an input 
quantity. 

EXAMPLE The specification of a particular measurement procedure requires that a certain input quantity be 
calculated from a specific power-series expansion whose higher-order terms are inexactly known. The systematic effect 
due to not being able to treat these terms exactly leads to an unknown fixed offset that cannot be experimentally sampled 
by repetitions of the procedure. Thus the uncertainty associated with the effect cannot be evaluated and included in the 
uncertainty of the final measurement result if a frequency-based interpretation of probability is strictly followed. However, 
interpreting probability on the basis of degree of belief allows the uncertainty characterizing the effect to be evaluated from 
an a priori probability distribution (derived from the available knowledge concerning the inexactly known terms) and to be 
included in the calculation of the combined standard uncertainty of the measurement result like any other uncertainty. 
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Table E.1 — [ ( )] ( )s q qσ σ , the standard deviation  
of the experimental standard deviation of the mean q   

of n independent observations of a normally distributed random variable q,  
relative to the standard deviation of that mean (a) (b) 

Number of observations [ ( )] ( )s q qσ σ  

n (percent) 

2 76 

3 52 

4 42 

5 36 

10 24 

20 16 

30 13 

50 10 

(a) The values given have been calculated from the exact expression for 
[ ( )] ( )s q qσ σ , not the approximate expression [2(n − 1)]−1/2. 

(b) In the expression [ ( )] ( )s q qσ σ , the denominator ( )qσ  is the expectation 
[ ]E S n  and the numerator [ ( )]s qσ  is the square root of the variance 
[ ]V S n , where S denotes a random variable equal to the standard deviation 

of n independent random variables X1, ..., Xn, each having a normal 
distribution with mean value µ and variance σ 2: 

( )2

1 1

1 1,
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n n

i i
i i

S X X X X
n n= =

= − =
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The expectation and variance of S are given by: 
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where Γ(x) is the gamma function. Note that E [S] < σ  for a finite number n.  

E.5 A comparison of two views of uncertainty 

E.5.1 The focus of this Guide is on the measurement result and its evaluated uncertainty rather than on the 
unknowable quantities “true” value and error (see Annex D). By taking the operational views that the result of 
a measurement is simply the value attributed to the measurand and that the uncertainty of that result is a 
measure of the dispersion of the values that could reasonably be attributed to the measurand, this Guide in 
effect uncouples the often confusing connection between uncertainty and the unknowable quantities “true” 
value and error. 

E.5.2 This connection may be understood by interpreting the derivation of Equation (E.3), the law of 
propagation of uncertainty, from the standpoint of “true” value and error. In this case, µ i is viewed as the 
unknown, unique “true” value of input quantity wi and each wi is assumed to be related to its “true” value µ i  
by wi = µ i + εi, where εi is the error in wi. The expectation of the probability distribution of each εi is assumed 
to be zero, E(εi) = 0, with variance 2 2( ) .i iE ε σ=  Equation (E.1) becomes then 

1

N

z i
ii

f
w

ε ε
=

∂=
∂∑  (E.8) 

where εz = z − µz is the error in z and µz is the “true” value of z. If one then takes the expectation of the square 
of εz, one obtains an equation identical in form to Equation (E.3) but in which 2 2( )z zEσ ε=  is the variance of εz 
and 2 2 1/2( , ) /( )ij i j i jρ υ ε ε σ σ=  is the correlation coefficient of εi and εj, where υ(εi, εj) = E(εiεj) is the 
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covariance of εi and εj. The variances and correlation coefficients are thus associated with the errors of the 
input quantities rather than with the input quantities themselves. 

NOTE It is assumed that probability is viewed as a measure of the degree of belief that an event will occur, implying 
that a systematic error may be treated in the same way as a random error and that εi represents either kind. 

E.5.3 In practice, the difference in point of view does not lead to a difference in the numerical value of the 
measurement result or of the uncertainty assigned to that result. 

First, in both cases, the best available estimates of the input quantities wi are used to obtain the best estimate 
of z from the function f ; it makes no difference in the calculations if the best estimates are viewed as the 
values most likely to be attributed to the quantities in question or the best estimates of their “true” values. 

Second, because εi = wi − µi, and because the µi represent unique, fixed values and hence have no 
uncertainty, the variances and standard deviations of the εi and wi are identical. This means that in both cases, 
the standard uncertainties used as the estimates of the standard deviations σi to obtain the combined 
standard uncertainty of the measurement result are identical and will yield the same numerical value for that 
uncertainty. Again, it makes no difference in the calculations if a standard uncertainty is viewed as a measure 
of the dispersion of the probability distribution of an input quantity or as a measure of the dispersion of the 
probability distribution of the error of that quantity. 

NOTE If the assumption of the note of E.5.2 had not been made, then the discussion of this subclause would not 
apply unless all of the estimates of the input quantities and the uncertainties of those estimates were obtained from the 
statistical analysis of repeated observations, that is, from Type A evaluations. 

E.5.4 While the approach based on “true” value and error yields the same numerical results as the 
approach taken in this Guide (provided that the assumption of the note of E.5.2 is made), this Guide's concept 
of uncertainty eliminates the confusion between error and uncertainty (see Annex D). Indeed, this Guide's 
operational approach, wherein the focus is on the observed (or estimated) value of a quantity and the 
observed (or estimated) variability of that value, makes any mention of error entirely unnecessary. 
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Annex F 
 

Practical guidance on evaluating uncertainty components 

This annex gives additional suggestions for evaluating uncertainty components, mainly of a practical nature, 
that are intended to complement the suggestions already given in Clause 4. 

F.1 Components evaluated from repeated observations: Type A evaluation of 
standard uncertainty 

F.1.1 Randomness and repeated observations 

F.1.1.1 Uncertainties determined from repeated observations are often contrasted with those evaluated 
by other means as being “objective”, “statistically rigorous”, etc. That incorrectly implies that they can be 
evaluated merely by the application of statistical formulae to the observations and that their evaluation does 
not require the application of some judgement. 

F.1.1.2 It must first be asked, “To what extent are the repeated observations completely independent 
repetitions of the measurement procedure?” If all of the observations are on a single sample, and if sampling 
is part of the measurement procedure because the measurand is the property of a material (as opposed to the 
property of a given specimen of the material), then the observations have not been independently repeated; 
an evaluation of a component of variance arising from possible differences among samples must be added to 
the observed variance of the repeated observations made on the single sample. 

If zeroing an instrument is part of the measurement procedure, the instrument ought to be rezeroed as part of 
every repetition, even if there is negligible drift during the period in which observations are made, for there is 
potentially a statistically determinable uncertainty attributable to zeroing. 

Similarly, if a barometer has to be read, it should in principle be read for each repetition of the measurement 
(preferably after disturbing it and allowing it to return to equilibrium), for there may be a variation both in 
indication and in reading, even if the barometric pressure is constant. 

F.1.1.3 Second, it must be asked whether all of the influences that are assumed to be random really are 
random. Are the means and variances of their distributions constant, or is there perhaps a drift in the value of 
an unmeasured influence quantity during the period of repeated observations? If there is a sufficient number 
of observations, the arithmetic means of the results of the first and second halves of the period and their 
experimental standard deviations may be calculated and the two means compared with each other in order to 
judge whether the difference between them is statistically significant and thus if there is an effect varying with 
time. 

F.1.1.4 If the values of “common services” in the laboratory (electric-supply voltage and frequency, water 
pressure and temperature, nitrogen pressure, etc.) are influence quantities, there is normally a strongly 
nonrandom element in their variations that cannot be overlooked. 

F.1.1.5 If the least significant figure of a digital indication varies continually during an observation due to 
“noise”, it is sometimes difficult not to select unknowingly personally preferred values of that digit. It is better to 
arrange some means of freezing the indication at an arbitrary instant and recording the frozen result. 
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F.1.2 Correlations 

Much of the discussion in this subclause is also applicable to Type B evaluations of standard uncertainty. 

F.1.2.1 The covariance associated with the estimates of two input quantities Xi and Xj may be taken to be 
zero or treated as insignificant if 

a) Xi and Xj are uncorrelated (the random variables, not the physical quantities that are assumed to be 
invariants — see 4.1.1, Note 1), for example, because they have been repeatedly but not simultaneously 
measured in different independent experiments or because they represent resultant quantities of different 
evaluations that have been made independently, or if 

b) either of the quantities Xi or Xj can be treated as a constant, or if 

c) there is insufficient information to evaluate the covariance associated with the estimates of Xi and Xj. 

NOTE 1 On the other hand, in certain cases, such as the reference-resistance example of Note 1 to 5.2.2, it is 
apparent that the input quantities are fully correlated and that the standard uncertainties of their estimates combine linearly. 

NOTE 2 Different experiments may not be independent if, for example, the same instrument is used in each (see 
F.1.2.3). 

F.1.2.2 Whether or not two repeatedly and simultaneously observed input quantities are correlated may 
be determined by means of Equation (17) in 5.2.3. For example, if the frequency of an oscillator 
uncompensated or poorly compensated for temperature is an input quantity, if ambient temperature is also an 
input quantity, and if they are observed simultaneously, there may be a significant correlation revealed by the 
calculated covariance of the frequency of the oscillator and the ambient temperature. 

F.1.2.3 In practice, input quantities are often correlated because the same physical measurement 
standard, measuring instrument, reference datum, or even measurement method having a significant 
uncertainty is used in the estimation of their values. Without loss of generality, suppose two input quantities  
X1 and X2 estimated by x1 and x2 depend on a set of uncorrelated variables Q1, Q2, ..., QL. Thus 
X1 = F(Q1, Q2, ..., QL) and X2 = G(Q1, Q2, ..., QL), although some of these variables may actually appear only 
in one function and not in the other. If u2(ql) is the estimated variance associated with the estimate ql of Ql, 
then the estimated variance associated with x1 is, from Equation (10) in 5.1.2, 

( ) ( )
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l
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Fu x u q
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with a similar expression for u2(x2). The estimated covariance associated with x1 and x2 is given by 
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l ll

F Gu x x u q
q q=

∂ ∂=
∂ ∂∑  (F.2) 

Because only those terms for which ∂F/∂ql ≠ 0 and ∂G/∂ql ≠ 0 for a given l contribute to the sum, the 
covariance is zero if no variable is common to both F and G. 

The estimated correlation coefficient r(x1, x2) associated with the two estimates x1 and x2 is determined from 
u(x1, x2) [Equation (F.2)] and Equation (14) in 5.2.2, with u(x1) calculated from Equation (F.1) and u(x2) from a 
similar expression. [See also Equation (H.9) in H.2.3.] It is also possible for the estimated covariance 
associated with two input estimates to have both a statistical component [see Equation (17) in 5.2.3] and a 
component arising as discussed in this subclause. 

EXAMPLE 1 A standard resistor RS is used in the same measurement to determine both a current I and a temperature t. 
The current is determined by measuring, with a digital voltmeter, the potential difference across the terminals of the 
standard; the temperature is determined by measuring, with a resistance bridge and the standard, the resistance Rt(t) of a 
calibrated resistive temperature sensor whose temperature-resistance relation in the range 15 °C u t u 30 °C is 

2
t 0( )t aR t t= − , where a and t0 are known constants. Thus the current is determined through the relation I = VS/RS and the 

temperature through the relation 2 2
S 0( )t a t R tβ= − , where β (t) is the measured ratio Rt(t)/RS provided by the bridge. 
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Since only the quantity RS is common to the expression for I and t, Equation (F.2) yields for the covariance of I and t 

( ) ( ) ( ) ( ) ( ) ( )02 2 2 2S
S S S2 S2S S S S

2
, 2

I t tVI tu I t u R a t R u R u RR R R R
β

⎛ ⎞ +∂ ∂ ⎡ ⎤⎜ ⎟= = − = −⎣ ⎦⎜ ⎟∂ ∂
⎝ ⎠

 

(For simplicity of notation, in this example the same symbol is used for both the input quantity and its estimate.) 

To obtain the numerical value of the covariance, one substitutes into this expression the numerical values of the measured 
quantities I and t, and the values of RS and u(RS) given in the standard resistor's calibration certificate. The unit of u(I, t) is 
clearly A·°C since the dimension of the relative variance [u(RS)/RS]2 is one (that is, the latter is a so-called dimensionless 
quantity). 

Further, let a quantity P be related to the input quantities I and t by P = C0I2/(T0 + t), where C0 and T0 are known constants 
with negligible uncertainties [u2(C0) ≈ 0, u2(T0) ≈ 0]. Equation (13) in 5.2.2 then yields for the variance of P in terms of the 
variances of I and t and their covariance 
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The variances u2(I) and u2(t) are obtained by the application of Equation (10) of 5.1.2 to the relations I = VS/RS and 
2 2

S 0( )t a t R tβ= − . The results are 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2
S S S S

2 22 2 2 2 2
0 0 S S4 4

u I I u V V u R R

u t t t u t t u R Rβ β

= +

= + + +
 

where for simplicity it is assumed that the uncertainties of the constants t0 and a are also negligible. These expressions 
can be readily evaluated since u2(VS) and u2(β ) may be determined, respectively, from the repeated readings of the 
voltmeter and of the resistance bridge. Of course, any uncertainties inherent in the instruments themselves and in the 
measurement procedures employed must also be taken into account when u2(VS) and u2(β ) are determined. 

EXAMPLE 2 In the example of Note 1 to 5.2.2, let the calibration of each resistor be represented by Ri = αiRS, with 
u(αi) the standard uncertainty of the measured ratio αi as obtained from repeated observations. Further, let αi ≈ 1 for each 
resistor, and let u(αi) be essentially the same for each calibration so that u(αi) ≈ u(α). Then Equations (F.1) and (F.2) yield 

2 2 2 2
S( ) ( ) ( )i Su R R u u Rα= +  and u(Ri, Rj) = u2(RS). This implies through Equation (14) in 5.2.2 that the correlation 

coefficient of any two resistors (i ≠ j) is 

( ) ( )
( )

12

S S
, 1i j ij

u
r R R r

u R R
α

−
⎧ ⎫⎡ ⎤⎪ ⎪≡ = + ⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

Since u(RS)/RS = 10−4, if u(α) = 100 × 10−6, rij ≈ 0,5; if u(α) = 10 × 10−6, rij ≈ 0,990; and if u(α) = 1 × 10−6, rij ≈ 1,000. Thus 
as u(α) → 0, rij → 1, and u(Ri) → u(RS). 

NOTE In general, in comparison calibrations such as this example, the estimated values of the calibrated items are 
correlated, with the degree of correlation depending upon the ratio of the uncertainty of the comparison to the uncertainty 
of the reference standard. When, as often occurs in practice, the uncertainty of the comparison is negligible with respect to 
the uncertainty of the standard, the correlation coefficients are equal to +1 and the uncertainty of each calibrated item is 
the same as that of the standard. 

F.1.2.4 The need to introduce the covariance u(xi, xj) can be bypassed if the original set of input 
quantities X1, X2, ..., XN upon which the measurand Y depends [see Equation (1) in 4.1] is redefined in such a 
way as to include as additional independent input quantities those quantities Ql that are common to two or 
more of the original Xi. (It may be necessary to perform additional measurements to establish fully the 
relationship between Ql and the affected Xi.) Nonetheless, in some situations it may be more convenient to 
retain covariances rather than to increase the number of input quantities. A similar process can be carried out 
on the observed covariances of simultaneous repeated observations [see Equation (17) in 5.2.3], but the 
identification of the appropriate additional input quantities is often ad hoc and nonphysical. 
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EXAMPLE If, in Example 1 of F.1.2.3, the expressions for I and t in terms of RS are introduced into the expression 
for P, the result is 

( )

2
0 S

2 2 2
S 0 S 0

C V
P

R T a t R tβ
=

⎡ ⎤+ −⎣ ⎦

 

and the correlation between I and t is avoided at the expense of replacing the input quantities I and t with the quantities VS, 
RS, and β. Since these quantities are uncorrelated, the variance of P can be obtained from Equation (10) in 5.1.2. 

F.2 Components evaluated by other means: Type B evaluation of standard 
uncertainty 

F.2.1 The need for Type B evaluations 

If a measurement laboratory had limitless time and resources, it could conduct an exhaustive statistical 
investigation of every conceivable cause of uncertainty, for example, by using many different makes and kinds 
of instruments, different methods of measurement, different applications of the method, and different 
approximations in its theoretical models of the measurement. The uncertainties associated with all of these 
causes could then be evaluated by the statistical analysis of series of observations and the uncertainty of 
each cause would be characterized by a statistically evaluated standard deviation. In other words, all of the 
uncertainty components would be obtained from Type A evaluations. Since such an investigation is not an 
economic practicality, many uncertainty components must be evaluated by whatever other means is practical. 

F.2.2 Mathematically determinate distributions 

F.2.2.1 The resolution of a digital indication 

One source of uncertainty of a digital instrument is the resolution of its indicating device. For example, even if 
the repeated indications were all identical, the uncertainty of the measurement attributable to repeatability 
would not be zero, for there is a range of input signals to the instrument spanning a known interval that would 
give the same indication. If the resolution of the indicating device is δx, the value of the stimulus that produces 
a given indication X can lie with equal probability anywhere in the interval X − δx/2 to X + δx/2. The stimulus is 
thus described by a rectangular probability distribution (see 4.3.7 and 4.4.5) of width δx with variance 
u2 = (δx)2/12, implying a standard uncertainty of u = 0,29δx for any indication. 

Thus a weighing instrument with an indicating device whose smallest significant digit is 1 g has a variance due 
to the resolution of the device of u2 = (1/12) g2 and a standard uncertainty of ( )1 12 g 0,29 g.u = =  

F.2.2.2 Hysteresis 

Certain kinds of hysteresis can cause a similar kind of uncertainty. The indication of an instrument may differ 
by a fixed and known amount according to whether successive readings are rising or falling. The prudent 
operator takes note of the direction of successive readings and makes the appropriate correction. But the 
direction of the hysteresis is not always observable: there may be hidden oscillations within the instrument 
about an equilibrium point so that the indication depends on the direction from which that point is finally 
approached. If the range of possible readings from that cause is δx, the variance is again u2 = (δx)2/12, and 
the standard uncertainty due to hysteresis is u = 0,29δx. 

F.2.2.3 Finite-precision arithmetic 

The rounding or truncation of numbers arising in automated data reduction by computer can also be a source 
of uncertainty. Consider, for example, a computer with a word length of 16 bits. If, in the course of 
computation, a number having this word length is subtracted from another from which it differs only in the 
16th bit, only one significant bit remains. Such events can occur in the evaluation of “ill-conditioned” 
algorithms, and they can be difficult to predict. One may obtain an empirical determination of the uncertainty 
by increasing the most important input quantity to the calculation (there is frequently one that is proportional to 
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the magnitude of the output quantity) by small increments until the output quantity changes; the smallest 
change in the output quantity that can be obtained by such means may be taken as a measure of the 
uncertainty; if it is δx, the variance is u2 = (δx)2/12 and u = 0,29δx. 

NOTE One may check the uncertainty evaluation by comparing the result of the computation carried out on the 
limited word-length machine with the result of the same computation carried out on a machine with a significantly larger 
word length. 

F.2.3 Imported input values 

F.2.3.1 An imported value for an input quantity is one that has not been estimated in the course of a 
given measurement but has been obtained elsewhere as the result of an independent evaluation. Frequently 
such an imported value is accompanied by some kind of statement about its uncertainty. For example, the 
uncertainty may be given as a standard deviation, a multiple of a standard deviation, or the half-width of an 
interval having a stated level of confidence. Alternatively, upper and lower bounds may be given, or no 
information may be provided about the uncertainty. In the latter case, those who use the value must employ 
their own knowledge about the likely magnitude of the uncertainty, given the nature of the quantity, the 
reliability of the source, the uncertainties obtained in practice for such quantities, etc. 

NOTE The discussion of the uncertainty of imported input quantities is included in this subclause on Type B 
evaluation of standard uncertainty for convenience; the uncertainty of such a quantity could be composed of components 
obtained from Type A evaluations or components obtained from both Type A and Type B evaluations. Since it is 
unnecessary to distinguish between components evaluated by the two different methods in order to calculate a combined 
standard uncertainty, it is unnecessary to know the composition of the uncertainty of an imported quantity. 

F.2.3.2 Some calibration laboratories have adopted the practice of expressing “uncertainty” in the form of 
upper and lower limits that define an interval having a “minimum” level of confidence, for example, “at least” 
95 percent. This may be viewed as an example of a so-called “safe” uncertainty (see E.1.2), and it cannot be 
converted to a standard uncertainty without a knowledge of how it was calculated. If sufficient information is 
given, it may be recalculated in accordance with the rules of this Guide; otherwise an independent 
assessment of the uncertainty must be made by whatever means are available. 

F.2.3.3 Some uncertainties are given simply as maximum bounds within which all values of the quantity 
are said to lie. It is a common practice to assume that all values within those bounds are equally probable (a 
rectangular probability distribution), but such a distribution should not be assumed if there is reason to expect 
that values within but close to the bounds are less likely than those nearer the centre of the bounds. A 
rectangular distribution of half-width a has a variance of a2/3; a normal distribution for which a is the half-width 
of an interval having a level of confidence of 99,73 percent has a variance of a2/9. It may be prudent to adopt 
a compromise between those values, for example, by assuming a triangular distribution for which the variance 
is a2/6 (see 4.3.9 and 4.4.6). 

F.2.4 Measured input values 

F.2.4.1 Single observation, calibrated instruments 

If an input estimate has been obtained from a single observation with a particular instrument that has been 
calibrated against a standard of small uncertainty, the uncertainty of the estimate is mainly one of repeatability. 
The variance of repeated measurements by the instrument may have been obtained on an earlier occasion, 
not necessarily at precisely the same value of the reading but near enough to be useful, and it may be 
possible to assume the variance to be applicable to the input value in question. If no such information is 
available, an estimate must be made based on the nature of the measuring apparatus or instrument, the 
known variances of other instruments of similar construction, etc. 

F.2.4.2 Single observation, verified instruments 

Not all measuring instruments are accompanied by a calibration certificate or a calibration curve. Most 
instruments, however, are constructed to a written standard and verified, either by the manufacturer or by an 
independent authority, to conform to that standard. Usually the standard contains metrological requirements, 
often in the form of “maximum permissible errors”, to which the instrument is required to conform. The 
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compliance of the instrument with these requirements is determined by comparison with a reference 
instrument whose maximum allowed uncertainty is usually specified in the standard. This uncertainty is then a 
component of the uncertainty of the verified instrument. 

If nothing is known about the characteristic error curve of the verified instrument it must be assumed that there 
is an equal probability that the error has any value within the permitted limits, that is, a rectangular probability 
distribution. However, certain types of instruments have characteristic curves such that the errors are, for 
example, likely always to be positive in part of the measuring range and negative in other parts. Sometimes 
such information can be deduced from a study of the written standard. 

F.2.4.3 Controlled quantities 

Measurements are frequently made under controlled reference conditions that are assumed to remain 
constant during the course of a series of measurements. For example, measurements may be performed on 
specimens in a stirred oil bath whose temperature is controlled by a thermostat. The temperature of the bath 
may be measured at the time of each measurement on a specimen, but if the temperature of the bath is 
cycling, the instantaneous temperature of the specimen may not be the temperature indicated by the 
thermometer in the bath. The calculation of the temperature fluctuations of the specimen based on 
heat-transfer theory, and of their variance, is beyond the scope of this Guide, but it must start from a known or 
assumed temperature cycle for the bath. That cycle may be observed by a fine thermocouple and a 
temperature recorder, but failing that, an approximation of it may be deduced from a knowledge of the nature 
of the controls. 

F.2.4.4 Asymmetric distributions of possible values 

There are occasions when all possible values of a quantity lie to one side of a single limiting value. For 
example, when measuring the fixed vertical height h (the measurand) of a column of liquid in a manometer, 
the axis of the height-measuring device may deviate from verticality by a small angle β. The distance l 
determined by the device will always be larger than h; no values less than h are possible. This is because h is 
equal to the projection lcosβ, implying l = h /cosβ, and all values of cosβ are less than one; no values greater 
than one are possible. This so-called “cosine error” can also occur in such a way that the projection h′cosβ of 
a measurand h′ is equal to the observed distance l, that is, l = h′cosβ, and the observed distance is always 
less than the measurand. 

If a new variable δ  = 1 − cosβ is introduced, the two different situations are, assuming β ≈ 0 or δ  << 1 as is 
usually the case in practice, 

( )1h l δ= −  (F.3a) 

( )1h l δ′ = +  (F.3b) 

Here l , the best estimate of l, is the arithmetic mean or average of n independent repeated observations lk of l 
with estimated variance 2( )u l  [see Equations (3) and (5) in 4.2]. Thus it follows from Equations (F.3a) and 
(F.3b) that to obtain an estimate of h or h′ requires an estimate of the correction factor δ, while to obtain the 
combined standard uncertainty of the estimate of h or h′ requires u2(δ), the estimated variance of δ. More 
specifically, application of Equation (10) in 5.1.2 to Equations (F.3a) and (F.3b) yields for 2

c ( )u h  and 2
c ( )u h′  

(− and + signs, respectively) 

( ) ( ) ( )22 2 2 2
c 1u u l l uδ δ= +m  (F.4a) 

     ( ) ( )2 2 2u l l u δ≈ +  (F.4b) 

To obtain estimates of the expected value of δ and the variance of δ, assume that the axis of the device used 
to measure the height of the column of liquid in the manometer is constrained to be fixed in a vertical plane 
and that the distribution of the values of the angle of inclination β  about its expected value of zero is a normal 
distribution with variance σ 2. Although β  can have both positive and negative values, δ  = 1 − cosβ  is positive 
for all values of β. If the misalignment of the axis of the device is assumed to be unconstrained, the orientation 
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of the axis can vary over a solid angle since it is capable of misalignment in azimuth as well, but β  is then 
always a positive angle. 

In the constrained or one-dimensional case, the probability element p(β )dβ  (C.2.5, note) is proportional to 
{exp[−β 2/(2σ2)]}dβ ; in the unconstrained or two-dimensional case, the probability element is proportional to 
{exp[−β 2/(2σ2)]}sinβ dβ. The probability density functions p(δ) in the two cases are the expressions required 
to determine the expectation and variance of δ  for use in Equations (F.3) and (F.4). They may readily be 
obtained from these probability elements because the angle β  may be assumed small, and hence 
δ  = 1 − cosβ  and sinβ  may be expanded to lowest order in β. This yields δ  ≈ β 2/2, sin 2β β δ≈ = , and 
d d 2β δ δ= . The probability density functions are then 

( ) ( )21 expp δ δ σ
σ δ

= −
π

 (F.5a) 

in one dimension 

( ) ( )2
2

1 expp δ δ σ
σ

= −  (F.5b) 

in two dimensions 

where 

( )
0

d 1p δ δ
∞

=∫  

Equations (F.5a) and (F.5b), which show that the most probable value of the correction δ  in both cases is zero, 
give in the one-dimensional case E(δ) = σ 2/2 and var(δ) = σ 4/2 for the expectation and the variance of δ ; and 
in the two-dimensional case E(δ) = σ 2 and var(δ) = σ 4. Equations (F.3a), (F.3b), and (F.4b) become then 

( ) ( )21 2h l d u β⎡ ⎤= −⎣ ⎦  (F.6a) 

( ) ( )21 2h l d u β⎡ ⎤′ = +⎣ ⎦  (F.6b) 

( ) ( ) ( ) ( ) ( )2 2 2 2 4
c c 2u h u h u l d l u β′= = +  (F.6c) 

where d is the dimensionality (d = 1 or 2) and u(β ) is the standard uncertainty of the angle β, taken to be the 
best estimate of the standard deviation σ  of an assumed normal distribution and to be evaluated from all of 
the information available concerning the measurement (Type B evaluation). This is an example of a case 
where the estimate of the value of a measurand depends on the uncertainty of an input quantity. 

Although Equations (F.6a) to (F.6c) are specific to the normal distribution, the analysis can be carried out 
assuming other distributions for β. For example, if one assumes for β  a symmetric rectangular distribution with 
upper and lower bounds of +β 0 and −β 0 in the one-dimensional case and +β 0 and zero in the two-dimensional 
case, 2

0( ) / 6E δ β=  and 4
0var( ) / 45δ β=  in one dimension; and 2

0( ) / 4E δ β=  and 4
0var( ) / 48δ β=  in two 

dimensions. 

NOTE This is a situation where the expansion of the function Y = f (X1, X2, ..., XN) in a first-order Taylor series to 
obtain 2

c( )u y , Equation (10) in 5.1.2, is inadequate because of the nonlinearity of f : cos cosβ β≠  (see Note to 5.1.2, and 
H.2.4). Although the analysis can be carried out entirely in terms of β, introducing the variable δ  simplifies the problem. 

Another example of a situation where all possible values of a quantity lie to one side of a single limiting value 
is the determination by titration of the concentration of a component in a solution where the end point is 
indicated by the triggering of a signal; the amount of reagent added is always more than that necessary to 
trigger the signal; it is never less. The excess titrated beyond the limit point is a required variable in the data 
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reduction, and the procedure in this (and in similar) cases is to assume an appropriate probability distribution 
for the excess and to use it to obtain the expected value of the excess and its variance. 

EXAMPLE If a rectangular distribution of lower bound zero and upper bound C0 is assumed for the excess z, then 
the expected value of the excess is C0/2 with associated variance 2

0 /12C . If the probability density function of the excess 
is taken as that of a normal distribution with 0 u z < ∞, that is, 1 2 2( ) ( /2 ) exp (2 )[ ]p z zσ σ−= π − , then the expected value 
is 2 /σ π  with variance σ 2(1 − 2/π). 

F.2.4.5 Uncertainty when corrections from a calibration curve are not applied 

The note to 6.3.1 discusses the case where a known correction b for a significant systematic effect is not 
applied to the reported result of a measurement but instead is taken into account by enlarging the 
“uncertainty” assigned to the result. An example is replacement of an expanded uncertainty U with U + b, 
where U is an expanded uncertainty obtained under the assumption b = 0. This practice is sometimes followed 
in situations where all of the following conditions apply: the measurand Y is defined over a range of values of a 
parameter t, as in the case of a calibration curve for a temperature sensor; U and b also depend on t ; and only 
a single value of “uncertainty” is to be given for all estimates y(t) of the measurand over the range of possible 
values of t. In such situations the result of the measurement is often reported as Y(t) = y(t) ± [Umax + bmax], 
where the subscript “max” indicates that the maximum value of U and the maximum value of the known 
correction b over the range of values of t are used. 

Although this Guide recommends that corrections be applied to measurement results for known significant 
systematic effects, this may not always be feasible in such a situation because of the unacceptable expense 
that would be incurred in calculating and applying an individual correction, and in calculating and using an 
individual uncertainty, for each value of y(t). 

A comparatively simple approach to this problem that is consistent with the principles of this Guide is as 
follows: 

Compute a single mean correction b  from 

( )2

12 1

1 d
t

t
b b t t

t t
=

− ∫  (F.7a) 

where t1 and t2 define the range of interest of the parameter t, and take the best estimate of Y(t) to be 
( ) ( )y t y t b′ = + , where y(t) is the best uncorrected estimate of Y(t). The variance associated with the mean 

correction b  over the range of interest is given by 

( ) ( )2

1

22

2 1

1 d
t

t
u b b t b t

t t
⎡ ⎤= −⎣ ⎦− ∫  (F.7b) 

not taking into account the uncertainty of the actual determination of the correction b(t). The mean variance of 
the correction b(t) due to its actual determination is given by 

( ) ( )2

1

2 2

2 1

1 d
t

t
u b t u b t t

t t
⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦− ∫  (F.7c) 

where u2[b(t)] is the variance of the correction b(t). Similarly, the mean variance of y(t) arising from all sources 
of uncertainty other than the correction b(t) is obtained from 

( ) ( )2

1

2 2

2 1

1 d
t

t
u y t u y t t

t t
⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦− ∫  (F.7d) 

where u2[y(t)] is the variance of y(t) due to all uncertainty sources other than b(t). The single value of standard 
uncertainty to be used for all estimates ( ) ( )y t y t b′ = +  of the measurand Y(t) is then the positive square root of 

( ) ( ) ( ) ( )2 2 2 2
cu y u y t u b t u b⎡ ⎤ ⎡ ⎤′ = + +⎣ ⎦ ⎣ ⎦  (F.7e) 
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An expanded uncertainty U may be obtained by multiplying uc(y′) by an appropriately chosen coverage factor k, 
U = kuc(y′), yielding ( ) ( ) ( ) .Y t y t U y t b U′= ± = + ±  However, the use of the same average correction for all 
values of t  rather than the correction appropriate for each value of t  must be recognized and a clear statement 
given as to what U represents. 

F.2.5 Uncertainty of the method of measurement 

F.2.5.1 Perhaps the most difficult uncertainty component to evaluate is that associated with the method of 
measurement, especially if the application of that method has been shown to give results with less variability 
than those of any other that is known. But it is likely that there are other methods, some of them as yet 
unknown or in some way impractical, that would give systematically different results of apparently equal 
validity. This implies an a priori probability distribution, not a distribution from which samples can be readily 
drawn and treated statistically. Thus, even though the uncertainty of the method may be the dominant one, the 
only information often available for evaluating its standard uncertainty is one's existing knowledge of the 
physical world. (See also E.4.4.) 

NOTE Determining the same measurand by different methods, either in the same laboratory or in different 
laboratories, or by the same method in different laboratories, can often provide valuable information about the uncertainty 
attributable to a particular method. In general, the exchange of measurement standards or reference materials between 
laboratories for independent measurement is a useful way of assessing the reliability of evaluations of uncertainty and of 
identifying previously unrecognized systematic effects. 

F.2.6 Uncertainty of the sample 

F.2.6.1 Many measurements involve comparing an unknown object with a known standard having similar 
characteristics in order to calibrate the unknown. Examples include end gauges, certain thermometers, sets of 
masses, resistors, and high purity materials. In most such cases, the measurement methods are not 
especially sensitive to, or adversely affected by, sample selection (that is, the particular unknown being 
calibrated), sample treatment, or the effects of various environmental influence quantities because the 
unknown and standard respond in generally the same (and often predictable) way to such variables. 

F.2.6.2 In some practical measurement situations, sampling and specimen treatment play a much larger 
role. This is often the case for the chemical analysis of natural materials. Unlike man-made materials, which 
may have proven homogeneity to a level beyond that required for the measurement, natural materials are 
often very inhomogeneous. This inhomogeneity leads to two additional uncertainty components. Evaluation of 
the first requires determining how adequately the sample selected represents the parent material being 
analysed. Evaluation of the second requires determining the extent to which the secondary (unanalysed) 
constituents influence the measurement and how adequately they are treated by the measurement method. 

F.2.6.3 In some cases, careful design of the experiment may make it possible to evaluate statistically the 
uncertainty due to the sample (see H.5 and H.5.3.2). Usually, however, especially when the effects of 
environmental influence quantities on the sample are significant, the skill and knowledge of the analyst 
derived from experience and all of the currently available information are required for evaluating the 
uncertainty. 
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Annex G 
 

Degrees of freedom and levels of confidence 

G.1 Introduction 

G.1.1 This annex addresses the general question of obtaining from the estimate y of the measurand Y, and 
from the combined standard uncertainty uc(y) of that estimate, an expanded uncertainty Up = kpuc(y) that 
defines an interval y − Up u Y u y + Up that has a high, specified coverage probability or level of confidence p. 
It thus deals with the issue of determining the coverage factor kp that produces an interval about the 
measurement result y that may be expected to encompass a large, specified fraction p of the distribution of 
values that could reasonably be attributed to the measurand Y (see Clause 6). 

G.1.2 In most practical measurement situations, the calculation of intervals having specified levels of 
confidence — indeed, the estimation of most individual uncertainty components in such situations — is at best 
only approximate. Even the experimental standard deviation of the mean of as many as 30 repeated 
observations of a quantity described by a normal distribution has itself an uncertainty of about 13 percent (see 
Table E.1 in Annex E). 

In most cases, it does not make sense to try to distinguish between, for example, an interval having a level of 
confidence of 95 percent (one chance in 20 that the value of the measurand Y lies outside the interval) and 
either a 94 percent or 96 percent interval (1 chance in 17 and 25, respectively). Obtaining justifiable intervals 
with levels of confidence of 99 percent (1 chance in 100) and higher is especially difficult, even if it is assumed 
that no systematic effects have been overlooked, because so little information is generally available about the 
most extreme portions or “tails” of the probability distributions of the input quantities. 

G.1.3 To obtain the value of the coverage factor kp that produces an interval corresponding to a specified 
level of confidence p requires detailed knowledge of the probability distribution characterized by the 
measurement result and its combined standard uncertainty. For example, for a quantity z described by a 
normal distribution with expectation µz and standard deviation σ, the value of kp that produces an interval 
µz ± kpσ that encompasses the fraction p of the distribution, and thus has a coverage probability or level of 
confidence p, can be readily calculated. Some examples are given in Table G.1. 

Table G.1 — Value of the coverage factor kp  
that produces an interval having level of confidence p  

assuming a normal distribution 

Level of confidence p 

(percent) 

Coverage factor kp 

68,27 1 

90 1,645 

95 1,960 

95,45 2 

99 2,576 

99,73 3 

NOTE By contrast, if z is described by a rectangular probability distribution with expectation µz and standard deviation 
3aσ = , where a is the half-width of the distribution, the level of confidence p is 57,74 percent for kp = 1; 95 percent for 

kp = 1,65; 99 percent for kp = 1,71; and 100 percent for 3 1,73pk ≈W ; the rectangular distribution is “narrower” than the 
normal distribution in the sense that it is of finite extent and has no “tails”. 
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G.1.4 If the probability distributions of the input quantities X1, X2, ..., XN upon which the measurand Y 
depends are known [their expectations, variances, and higher moments (see C.2.13 and C.2.22) if the 
distributions are not normal distributions], and if Y is a linear function of the input quantities, 
Y = c1X1 + c2X2 + ... + cNXN, then the probability distribution of Y may be obtained by convolving the individual 
probability distributions [10]. Values of kp that produce intervals corresponding to specified levels of 
confidence p may then be calculated from the resulting convolved distribution. 

G.1.5 If the functional relationship between Y and its input quantities is nonlinear and a first-order Taylor 
series expansion of the relationship is not an acceptable approximation (see 5.1.2 and 5.1.5), then the 
probability distribution of Y cannot be obtained by convolving the distributions of the input quantities. In such 
cases, other analytical or numerical methods are required. 

G.1.6 In practice, because the parameters characterizing the probability distributions of input quantities are 
usually estimates, because it is unrealistic to expect that the level of confidence to be associated with a given 
interval can be known with a great deal of exactness, and because of the complexity of convolving probability 
distributions, such convolutions are rarely, if ever, implemented when intervals having specified levels of 
confidence need to be calculated. Instead, approximations are used that take advantage of the Central Limit 
Theorem. 

G.2 Central Limit Theorem 

G.2.1 If 11 1 2 2 ... N
iN N i iY c X c X c X c X== + + + = Σ  and all the Xi are characterized by normal distributions, 

then the resulting convolved distribution of Y will also be normal. However, even if the distributions of the Xi 
are not normal, the distribution of Y may often be approximated by a normal distribution because of the 
Central Limit Theorem. This theorem states that the distribution of Y will be approximately normal with 
expectation 1( ) ( )N

i i iE Y c E X== Σ  and variance 1
2 2 2( ) ( )N

i iiY c Xσ σ== Σ , where E(Xi) is the expectation of Xi 
and σ 2(Xi) is the variance of Xi, if the Xi are independent and σ 2(Y) is much larger than any single component 

2 2( )iic Xσ  from a non-normally distributed Xi. 

G.2.2 The Central Limit Theorem is significant because it shows the very important role played by the 
variances of the probability distributions of the input quantities, compared with that played by the higher 
moments of the distributions, in determining the form of the resulting convolved distribution of Y. Further, it 
implies that the convolved distribution converges towards the normal distribution as the number of input 
quantities contributing to σ 2(Y) increases; that the convergence will be more rapid the closer the values of 

2 2( )iic Xσ  are to each other (equivalent in practice to each input estimate xi contributing a comparable 
uncertainty to the uncertainty of the estimate y of the measurand Y); and that the closer the distributions of the 
Xi are to being normal, the fewer Xi are required to yield a normal distribution for Y. 

EXAMPLE The rectangular distribution (see 4.3.7 and 4.4.5) is an extreme example of a non-normal distribution, but 
the convolution of even as few as three such distributions of equal width is approximately normal. If the half-width of each 
of the three rectangular distributions is a so that the variance of each is a2/3, the variance of the convolved distribution is 
σ 2 = a2. The 95 percent and 99 percent intervals of the convolved distribution are defined by 1,937σ and 2,379σ, 
respectively, while the corresponding intervals for a normal distribution with the same standard deviation σ  are defined by 
1,960σ  and 2,576σ  (see Table G.1) [10]. 

NOTE 1 For every interval with a level of confidence p greater than about 91,7 percent, the value of kp for a normal 
distribution is larger than the corresponding value for the distribution resulting from the convolution of any number and size 
of rectangular distributions. 

NOTE 2 It follows from the Central Limit Theorem that the probability distribution of the arithmetic mean q  of n 
observations qk of a random variable q with expectation µq and finite standard deviation σ  approaches a normal 
distribution with mean µq and standard deviation nσ  as n → ∞, whatever may be the probability distribution of q. 

G.2.3 A practical consequence of the Central Limit Theorem is that when it can be established that its 
requirements are approximately met, in particular, if the combined standard uncertainty uc(y) is not dominated 
by a standard uncertainty component obtained from a Type A evaluation based on just a few observations, or 
by a standard uncertainty component obtained from a Type B evaluation based on an assumed rectangular 
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distribution, a reasonable first approximation to calculating an expanded uncertainty Up = kpuc(y) that provides 
an interval with level of confidence p is to use for kp a value from the normal distribution. The values most 
commonly used for this purpose are given in Table G.1. 

G.3 The t-distribution and degrees of freedom 

G.3.1 To obtain a better approximation than simply using a value of kp from the normal distribution as in 
G.2.3, it must be recognized that the calculation of an interval having a specified level of confidence requires, 
not the distribution of the variable [Y − E(Y)]/σ (Y), but the distribution of the variable (y − Y)/uc(y). This is 
because in practice, all that is usually available are y, the estimate of Y as obtained from 1

N
i i iy c x== Σ , where 

xi is the estimate of Xi; and the combined variance associated with y, 2
c ( ),u y  evaluated  

from 1
2 2 2
c ( ) ( )N

i i iu y c u x== Σ , where u(xi) is the standard uncertainty (estimated standard deviation) of the 
estimate xi. 

NOTE Strictly speaking, in the expression (y − Y )/uc(y), Y should read E(Y ). For simplicity, such a distinction has only 
been made in a few places in this Guide. In general, the same symbol has been used for the physical quantity, the random 
variable that represents that quantity, and the expectation of that variable (see 4.1.1, notes). 

G.3.2 If z is a normally distributed random variable with expectation µz and standard deviation σ, and z  is 
the arithmetic mean of n independent observations zk of z with ( )s z  the experimental standard deviation of z  
[see Equations (3) and (5) in 4.2], then the distribution of the variable ( ) ( )zt z s zµ= −  is the t-distribution or 
Student's distribution (C.3.8) with v = n − 1 degrees of freedom. 

Consequently, if the measurand Y is simply a single normally distributed quantity X, Y = X; and if X is estimated 
by the arithmetic mean X  of n independent repeated observations Xk of X, with experimental standard 
deviation of the mean ( )s X , then the best estimate of Y is y X=  and the experimental standard deviation of 
that estimate is c ( ) ( )u y s X= . Then c( ) ( ) ( ) ( ) ( ) ( )zt z s z X X s X y Y u yµ= − = − = −  is distributed according to 
the t-distribution with 

( ) ( )Pr p pt v t t v p⎡ ⎤− =⎣ ⎦u u  (G.1a) 

or 

( ) ( ) ( ) ( )cPr p pt v y Y u y t v p⎡ ⎤− − =⎣ ⎦u u  (G.1b) 

which can be rewritten as 

( ) ( ) ( ) ( )c cPr p py t v u y Y y t v u y p⎡ ⎤− + =⎣ ⎦u u  (G,1c) 

In these expressions, Pr[ ] means “probability of” and the t-factor tp(v) is the value of t for a given value of  
the parameter v — the degrees of freedom (see G.3.3) — such that the fraction p of the t distribution is 
encompassed by the interval −tp(v) to +tp(v). Thus the expanded uncertainty 

( ) ( ) ( )c cp p pU k u y t v u y= =  (G.1d) 

defines an interval y − Up to y + Up, conveniently written as Y = y ± Up, that may be expected to encompass a 
fraction p of the distribution of values that could reasonably be attributed to Y, and p is the coverage probability 
or level of confidence of the interval. 

G.3.3 The degrees of freedom v is equal to n − 1 for a single quantity estimated by the arithmetic mean of 
n independent observations, as in G.3.2. If n independent observations are used to determine both the slope 
and intercept of a straight line by the method of least squares, the degrees of freedom of their respective 
standard uncertainties is v = n − 2. For a least-squares fit of m parameters to n data points, the degrees of 
freedom of the standard uncertainty of each parameter is v = n − m. (See Reference [15] for a further 
discussion of degrees of freedom.) 
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G.3.4 Selected values of tp(v) for different values of v and various values of p are given in Table G.2 at the 
end of this annex. As v → ∞ the t-distribution approaches the normal distribution and tp(v) ≈ (1 + 2/v)1/2kp, 
where in this expression kp is the coverage factor required to obtain an interval with level of confidence p for a 
normally distributed variable. Thus the value of tp(∞) in Table G.2 for a given p equals the value of kp in 
Table G.1 for the same p. 

NOTE Often, the t-distribution is tabulated in quantiles; that is, values of the quantile t1 − α are given, where 1 − α 
denotes the cumulative probability and the relation 

( )11 , d
t

f t v tαα −

− ∞
− = ∫  

defines the quantile, where f is the probability density function of t. Thus tp and t1 − α are related by p = 1 − 2α. For 
example, the value of the quantile t0,975, for which 1 − α  = 0,975 and α  = 0,025, is the same as tp(v) for p = 0,95. 

G.4 Effective degrees of freedom 

G.4.1 In general, the t-distribution will not describe the distribution of the variable (y − Y)/uc(y) if 2
c ( )u y  is the 

sum of two or more estimated variance components 2 2 2( ) ( )i i iu y c u x=  (see 5.1.3), even if each xi is the 
estimate of a normally distributed input quantity Xi. However, the distribution of that variable may be 
approximated by a t-distribution with an effective degrees of freedom veff obtained from the 
Welch-Satterthwaite formula [16], [17], [18] 

( ) ( )4 4
c

eff 1

N
i

ii

u y u y
v v=

=∑  (G.2a) 

or 

( )
( )

4
c

eff 4

1

N
i

ii

u y
v

u y
v=

=

∑
 (G.2b) 

with 

eff
1

N

i
i

v v
=
∑u  (G.2c) 

where 2 2
c 1( ) ( )N

i iu y u y==∑  (see 5.1.3). The expanded uncertainty Up = kpuc(y) = tp(veff)uc(y) then provides an 
interval Y = y ± Up having an approximate level of confidence p. 

NOTE 1 If the value of veff obtained from Equation (G.2b) is not an integer, which will usually be the case in practice, 
the corresponding value of tp may be found from Table G.2 by interpolation or by truncating veff to the next lower integer. 

NOTE 2 If an input estimate xi is itself obtained from two or more other estimates, then the value of vi to be used with 
4 2 2 2( ) [ ( )]i i iu y c u x=  in the denominator of Equation (G.2b) is the effective degrees of freedom calculated from an 

expression equivalent to Equation (G.2b). 

NOTE 3 Depending upon the needs of the potential users of a measurement result, it may be useful, in addition to veff, 
to calculate and report also values for veffA and veffB, computed from Equation (G.2b) treating separately the standard 
uncertainties obtained from Type A and Type B evaluations. If the contributions to 2

c( )u y  of the Type A and Type B 
standard uncertainties alone are denoted, respectively, by 2

cA( )u y  and 2
cB( )u y , the various quantities are related by 

( ) ( ) ( )2 2 2
c cA cBu y u y u y= +  

( ) ( ) ( )4 4 4
c cA cB

eff effA effB

u y u y u y
v v v

= +  
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EXAMPLE Consider that Y = f (X1, X2, X3) = bX1X2X3 and that the estimates x1, x2, x3 of the normally distributed  
input quantities X1, X2, X3 are the arithmetic means of n1 = 10, n2 = 5, and n3 = 15 independent repeated  
observations, respectively, with relative standard uncertainties u(x1)/x1 = 0,25 percent, u(x2)/x2 = 0,57 percent, and 
u(x3)/x3 = 0,82 percent. In this case, ci = ∂f /∂Xi = Y/Xi (to be evaluated at x1, x2, x3 — see 5.1.3, Note 1), 

2 3 2 2
c 1[ ( ) / ] [ ( ) / ] (1,03 percent)i i iu y y u x x== =∑  (see Note 2 to 5.1.6), and Equation (G.2b) becomes 

( )
( )

4
c

eff 43

1

i i

ii

u y y
v

u x x
v=

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦∑

 

Thus 
4

eff 4 4 4
1,03 19,0

0,25 0,57 0,82
10 1 5 1 15 1

v = =
+ +

− − −

 

The value of tp for p = 95 percent and v = 19 is, from Table G.2, t95(19) = 2,09; hence the relative expanded uncertainty for 
this level of confidence is U95 = 2,09 × (1,03 percent) = 2,2 percent. It may then be stated that Y = y ± U95 = y (1 ± 0,022) 
(y  to be determined from y = bx1x2x3), or that 0,978y u Y u 1,022y, and that the level of confidence to be associated with 
the interval is approximately 95 percent. 

G.4.2 In practice, uc(y) depends on standard uncertainties u(xi) of input estimates of both normally and 
non-normally distributed input quantities, and the u(xi) are obtained from both frequency-based and a priori 
probability distributions (that is, from both Type A and Type B evaluations). A similar statement applies to the 
estimate y and input estimates xi upon which y depends. Nevertheless, the probability distribution of the 
function t = (y − Y)/uc(y) can be approximated by the t-distribution if it is expanded in a Taylor series about its 
expectation. In essence, this is what is achieved, in the lowest order approximation, by the 
Welch-Satterthwaite formula, Equation (G.2a) or Equation (G.2b). 

The question arises as to the degrees of freedom to assign to a standard uncertainty obtained from a Type B 
evaluation when veff is calculated from Equation (G.2b). Since the appropriate definition of degrees of freedom 
recognizes that v as it appears in the t-distribution is a measure of the uncertainty of the variance 2( )s z , 
Equation (E.7) in E.4.3 may be used to define the degrees of freedom vi, 

( )
( )

( )
( )

22

2
1 1
2 2

i i
i

ii

u x u x
v

u xu xσ

−
⎡ ⎤∆

≈ ≈ ⎢ ⎥
⎡ ⎤ ⎢ ⎥⎣ ⎦⎣ ⎦

 (G.3) 

The quantity in large brackets is the relative uncertainty of u(xi); for a Type B evaluation of standard 
uncertainty it is a subjective quantity whose value is obtained by scientific judgement based on the pool of 
available information. 

EXAMPLE Consider that one's knowledge of how input estimate xi was determined and how its standard uncertainty 
u(xi) was evaluated leads one to judge that the value of u(xi) is reliable to about 25 percent. This may be taken to mean 
that the relative uncertainty is ∆u(xi)/u(xi) = 0,25, and thus from Equation (G.3), vi = (0,25)−2/2 = 8. If instead one had 
judged the value of u(xi) to be reliable to only about 50 percent, then vi = 2. (See also Table E.1 in Annex E.) 

G.4.3 In the discussion in 4.3 and 4.4 of Type B evaluation of standard uncertainty from an a priori 
probability distribution, it was implicitly assumed that the value of u(xi) resulting from such an evaluation is 
exactly known. For example, when u(xi) is obtained from a rectangular probability distribution of assumed 
half-width a = (a+ − a−)/2 as in 4.3.7 and 4.4.5, ( ) 3iu x a=  is viewed as a constant with no uncertainty 
because a+ and a−, and thus a, are so viewed (but see 4.3.9, Note 2). This implies through Equation (G.3) that 
vi → ∞ or 1/vi → 0, but it causes no difficulty in evaluating Equation (G.2b). Further, assuming that vi → ∞ is 
not necessarily unrealistic; it is common practice to choose a− and a+ in such a way that the probability of the 
quantity in question lying outside the interval a− to a+ is extremely small. 
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G.5 Other considerations 

G.5.1 An expression found in the literature on measurement uncertainty and often used to obtain an 
uncertainty that is intended to provide an interval with a 95 percent level of confidence may be written as 

( )
1/ 22 2 2

95 95 eff 3U t v s u⎡ ⎤′ ′= +⎣ ⎦  (G.4) 

Here t95(v′eff) is taken from the t-distribution for v′eff degrees of freedom and p = 95 percent; v′eff is the 
effective degrees of freedom calculated from the Welch-Satterthwaite formula [Equation (G.2b)] taking into 
account only those standard uncertainty components si that have been evaluated statistically from repeated 
observations in the current measurement; 2 2 2;i is c s= ∑  ci ≡ ∂f /∂xi; and ( )2 2 2 2( ) 3j j ju u y c a= =∑ ∑  
accounts for all other components of uncertainty, where +aj and −aj are the assumed exactly known upper and 
lower bounds of Xj relative to its best estimate xj (that is, xj − aj u Xj u xj + aj). 

NOTE A component based on repeated observations made outside the current measurement is treated in the same 
way as any other component included in u2. Hence, in order to make a meaningful comparison between Equation (G.4) 
and Equation (G.5) of the following subclause, it is assumed that such components, if present, are negligible. 

G.5.2 If an expanded uncertainty that provides an interval with a 95 percent level of confidence is evaluated 
according to the methods recommended in G.3 and G.4, the resulting expression in place of Equation (G.4) is 

( )( )1/ 22 2
95 95 effU t v s u= +  (G.5) 

where veff is calculated from Equation (G.2b) and the calculation includes all uncertainty components. 

In most cases, the value of U95 from Equation (G.5) will be larger than the value of U ′95 from Equation (G.4), if 
it is assumed that in evaluating Equation (G.5), all Type B variances are obtained from a priori rectangular 
distributions with half-widths that are the same as the bounds aj used to compute u2 of Equation (G.4). This 
may be understood by recognizing that, although t95(v′eff) will in most cases be somewhat larger than t95(veff), 
both factors are close to 2; and in Equation (G.5) u2 is multiplied by 2

eff( ) 4pt v ≈  while in Equation (G.4) it is 
multiplied by 3. Although the two expressions yield equal values of U ′95 and U95 for u2 << s2, U ′95 will be  
as much as 13 percent smaller than U95 if u2 >> s2. Thus in general, Equation (G.4) yields an uncertainty that 
provides an interval having a smaller level of confidence than the interval provided by the expanded 
uncertainty calculated from Equation (G.5). 

NOTE 1 In the limits u2/s2 → ∞ and veff → ∞, U ′95 → 1,732u while U95 → 1,960u. In this case, U ′95 provides an interval 
having only a 91,7 percent level of confidence, while U95 provides a 95 percent interval. This case is approximated in 
practice when the components obtained from estimates of upper and lower bounds are dominant, large in number, and 
have values of 2 2 2( ) / 3j j ju y c a=  that are of comparable size. 

NOTE 2 For a normal distribution, the coverage factor 3 1,732k = ≈  provides an interval with a level of confidence 
p = 91,673... percent. This value of p is robust in the sense that it is, in comparison with that of any other value, optimally 
independent of small deviations of the input quantities from normality. 

G.5.3 Occasionally an input quantity Xi is distributed asymmetrically — deviations about its expected value 
of one sign are more probable than deviations of the opposite sign (see 4.3.8). Although this makes no 
difference in the evaluation of the standard uncertainty u(xi) of the estimate xi of Xi, and thus in the evaluation 
of uc(y), it may affect the calculation of U. 

It is usually convenient to give a symmetric interval, Y = y ± U, unless the interval is such that there is a cost 
differential between deviations of one sign over the other. If the asymmetry of Xi causes only a small 
asymmetry in the probability distribution characterized by the measurement result y and its combined standard 
uncertainty uc(y), the probability lost on one side by quoting a symmetric interval is compensated by the 
probability gained on the other side. The alternative is to give an interval that is symmetric in probability (and 
thus asymmetric in U): the probability that Y lies below the lower limit y − U− is equal to the probability that  
Y lies above the upper limit y + U+. But in order to quote such limits, more information than simply the 
estimates y and uc(y) [and hence more information than simply the estimates xi and u(xi) of each input quantity 
Xi] is needed. 
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G.5.4 The evaluation of the expanded uncertainty Up given here in terms of uc(y), veff, and the factor tp(veff) 
from the t-distribution is only an approximation, and it has its limitations. The distribution of (y − Y)/uc(y) is 
given by the t-distribution only if the distribution of Y is normal, the estimate y and its combined standard 
uncertainty uc(y) are independent, and if the distribution of 2

c ( )u y  is a χ2 distribution. The introduction of veff, 
Equation (G.2b), deals only with the latter problem, and provides an approximately χ2 distribution for 2

c ( )u y ; 
the other part of the problem, arising from the non-normality of the distribution of Y, requires the consideration 
of higher moments in addition to the variance. 

G.6 Summary and conclusions 

G.6.1 The coverage factor kp that provides an interval having a level of confidence p close to a specified 
level can only be found if there is extensive knowledge of the probability distribution of each input quantity and 
if these distributions are combined to obtain the distribution of the output quantity. The input estimates xi and 
their standard uncertainties u(xi) by themselves are inadequate for this purpose. 

G.6.2 Because the extensive computations required to combine probability distributions are seldom justified 
by the extent and reliability of the available information, an approximation to the distribution of the output 
quantity is acceptable. Because of the Central Limit Theorem, it is usually sufficient to assume that the 
probability distribution of (y − Y)/uc(y) is the t-distribution and take kp = tp(veff), with the t-factor based on an 
effective degrees of freedom veff of uc(y) obtained from the Welch-Satterthwaite formula, Equation (G.2b). 

G.6.3 To obtain veff from Equation (G.2b) requires the degrees of freedom vi for each standard uncertainty 
component. For a component obtained from a Type A evaluation, vi is obtained from the number of 
independent repeated observations upon which the corresponding input estimate is based and the number of 
independent quantities determined from those observations (see G.3.3). For a component obtained from a 
Type B evaluation, vi is obtained from the judged reliability of the value of that component [see G.4.2 and 
Equation (G.3)]. 

G.6.4 Thus the following is a summary of the preferred method of calculating an expanded uncertainty 
Up = kpuc(y) intended to provide an interval Y = y ± Up that has an approximate level of confidence p: 

1) Obtain y and uc(y) as described in Clauses 4 and 5. 

2) Compute veff from the Welch-Satterthwaite formula, Equation (G.2b) (repeated here for easy reference) 

( )
( )

4
c

eff 4

1

N
i

ii

u y
v

u y
v=

=

∑
 (G.2b) 

If u(xi) is obtained from a Type A evaluation, determine vi as outlined in G.3.3. If u(xi) is obtained from a 
Type B evaluation and it can be treated as exactly known, which is often the case in practice, vi → ∞; 
otherwise, estimate vi from Equation (G.3). 

3) Obtain the t-factor tp(veff) for the desired level of confidence p from Table G.2. If veff is not an integer, 
either interpolate or truncate veff to the next lower integer. 

4) Take kp = tp(veff) and calculate Up = kpuc(y). 

G.6.5 In certain situations, which should not occur too frequently in practice, the conditions required by the 
Central Limit Theorem may not be well met and the approach of G.6.4 may lead to an unacceptable result. 
For example, if uc(y) is dominated by a component of uncertainty evaluated from a rectangular distribution 
whose bounds are assumed to be exactly known, it is possible [ if eff( ) 3pt v > ] that y + Up and y − Up, the 
upper and lower limits of the interval defined by Up, could lie outside the bounds of the probability distribution 
of the output quantity Y. Such cases must be dealt with on an individual basis but are often amenable to an 
approximate analytic treatment (involving, for example, the convolution of a normal distribution with a 
rectangular distribution [10]). 
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G.6.6 For many practical measurements in a broad range of fields, the following conditions prevail: 

⎯ the estimate y of the measurand Y is obtained from estimates xi of a significant number of input quantities 
Xi that are describable by well-behaved probability distributions, such as the normal and rectangular 
distributions; 

⎯ the standard uncertainties u(xi) of these estimates, which may be obtained from either Type A or Type B 
evaluations, contribute comparable amounts to the combined standard uncertainty uc(y) of the 
measurement result y; 

⎯ the linear approximation implied by the law of propagation of uncertainty is adequate (see 5.1.2 and 
E.3.1); 

⎯ the uncertainty of uc(y) is reasonably small because its effective degrees of freedom veff has a significant 
magnitude, say greater than 10. 

Under these circumstances, the probability distribution characterized by the measurement result and its 
combined standard uncertainty can be assumed to be normal because of the Central Limit Theorem; and uc(y) 
can be taken as a reasonably reliable estimate of the standard deviation of that normal distribution because of 
the significant size of veff. Then, based on the discussion given in this annex, including that emphasizing the 
approximate nature of the uncertainty evaluation process and the impracticality of trying to distinguish 
between intervals having levels of confidence that differ by one or two percent, one may do the following: 

⎯ adopt k = 2 and assume that U = 2uc(y) defines an interval having a level of confidence of approximately 
95 percent; 

or, for more critical applications, 

⎯ adopt k = 3 and assume that U = 3uc(y) defines an interval having a level of confidence of approximately 
99 percent. 

Although this approach should be suitable for many practical measurements, its applicability to any particular 
measurement will depend on how close k = 2 must be to t95(veff) or k = 3 must be to t99(veff); that is, on how 
close the level of confidence of the interval defined by U = 2uc(y) or U = 3uc(y) must be to 95 percent or 
99 percent, respectively. Although for veff = 11, k = 2 and k = 3 underestimate t95(11) and t99(11) by only about 
10 percent and 4 percent, respectively (see Table G.2), this may not be acceptable in some cases. Further, 
for all values of veff somewhat larger than 13, k = 3 produces an interval having a level of confidence larger 
than 99 percent. (See Table G.2, which also shows that for veff → ∞ the levels of confidence of the intervals 
produced by k = 2 and k = 3 are 95,45 percent and 99,73 percent, respectively). Thus, in practice, the size of 
veff and what is required of the expanded uncertainty will determine whether this approach can be used. 
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Table G.2 — Value of tp(v) from the t-distribution for degrees of freedom v that defines  
an interval −tp(v) to +tp(v) that encompasses the fraction p of the distribution 

Degrees of 
freedom Fraction p in percent 

v 68,27a) 90 95 95,45a) 99 99,73a) 
1 1,84 6,31 12,71 13,97 63,66 235,80 
2 1,32 2,92 4,30 4,53 9,92 19,21 
3 1,20 2,35 3,18 3,31 5,84 9,22 
4 1,14 2,13 2,78 2,87 4,60 6,62 
5 1,11 2,02 2,57 2,65 4,03 5,51 
       

6 1,09 1,94 2,45 2,52 3,71 4,90 
7 1,08 1,89 2,36 2,43 3,50 4,53 
8 1,07 1,86 2,31 2,37 3,36 4,28 
9 1,06 1,83 2,26 2,32 3,25 4,09 

10 1,05 1,81 2,23 2,28 3,17 3,96 
       

11 1,05 1,80 2,20 2,25 3,11 3,85 
12 1,04 1,78 2,18 2,23 3,05 3,76 
13 1,04 1,77 2,16 2,21 3,01 3,69 
14 1,04 1,76 2,14 2,20 2,98 3,64 
15 1,03 1,75 2,13 2,18 2,95 3,59 
       

16 1,03 1,75 2,12 2,17 2,92 3,54 
17 1,03 1,74 2,11 2,16 2,90 3,51 
18 1,03 1,73 2,10 2,15 2,88 3,48 
19 1,03 1,73 2,09 2,14 2,86 3,45 
20 1,03 1,72 2,09 2,13 2,85 3,42 
       

25 1,02 1,71 2,06 2,11 2,79 3,33 
30 1,02 1,70 2,04 2,09 2,75 3,27 
35 1,01 1,70 2,03 2,07 2,72 3,23 
40 1,01 1,68 2,02 2,06 2,70 3,20 
45 1,01 1,68 2,01 2,06 2,69 3,18 
       

50 1,01 1,68 2,01 2,05 2,68 3,16 
100 1,005 1,660 1,984 2,025 2,626 3,077 
∞ 1,000 1,645 1,960 2,000 2,576 3,000 

a) For a quantity z described by a normal distribution with expectation µz and standard deviation σ, the interval 
µz ± kσ encompasses p = 68,27 percent, 95,45 percent and 99,73 percent of the distribution for k = 1, 2 and 3, 
respectively. 
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Annex H 
 

Examples 

This annex gives six examples, H.1 to H.6, which are worked out in considerable detail in order to illustrate the 
basic principles presented in this Guide for evaluating and expressing uncertainty in measurement. Together 
with the examples included in the main text and in some of the other annexes, they should enable the users of 
this Guide to put these principles into practice in their own work. 

Because the examples are for illustrative purposes, they have by necessity been simplified. Moreover, 
because they and the numerical data used in them have been chosen mainly to demonstrate the principles of 
this Guide, neither they nor the data should necessarily be interpreted as describing real measurements. 
While the data are used as given, in order to prevent rounding errors, more digits are retained in intermediate 
calculations than are usually shown. Thus the stated result of a calculation involving several quantities may 
differ slightly from the result implied by the numerical values given in the text for these quantities. 

It is pointed out in earlier portions of this Guide that classifying the methods used to evaluate components of 
uncertainty as Type A or Type B is for convenience only; it is not required for the determination of the 
combined standard uncertainty or expanded uncertainty of a measurement result because all uncertainty 
components, however they are evaluated, are treated in the same way (see 3.3.4, 5.1.2, and E.3.7). Thus, in 
the examples, the method used to evaluate a particular component of uncertainty is not specifically identified 
as to its type. However, it will be clear from the discussion whether a component is obtained from a Type A or 
a Type B evaluation. 

H.1 End-gauge calibration 

This example demonstrates that even an apparently simple measurement may involve subtle aspects of 
uncertainty evaluation. 

H.1.1 The measurement problem 

The length of a nominally 50 mm end gauge is determined by comparing it with a known standard of the same 
nominal length. The direct output of the comparison of the two end gauges is the difference d in their lengths: 

( ) ( )S S S1 1d l lαθ α θ= + − +  (H.1) 

where 

l is the measurand, that is, the length at 20 °C of the end gauge being calibrated; 

lS is the length of the standard at 20 °C as given in its calibration certificate; 

α  and αS are the coefficients of thermal expansion, respectively, of the gauge being calibrated and the 
standard; 

θ  and θS are the deviations in temperature from the 20 °C reference temperature, respectively, of the 
gauge and the standard. 
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H.1.2 Mathematical model 

From Equation (H.1), the measurand is given by 

( )
( ) ( )S S S

S S S S
1

...
1

l d
l l d l

α θ
α θ αθ

αθ
+ +

= = + + − +
+

 (H.2) 

If the difference in temperature between the end gauge being calibrated and the standard is written as 
δθ  = θ  − θS, and the difference in their thermal expansion coefficients as δα = α  − αS, Equation (H.2) 
becomes 

( ) ( )S S S S S, , , , ,l f l d l d lα θ α θ α θ α θ= δ δ = + − δ ⋅ + ⋅ δ  (H.3) 

The differences δθ  and δα, but not their uncertainties, are estimated to be zero; and δα, αS, δθ, and θ  are 
assumed to be uncorrelated. (If the measurand were expressed in terms of the variables θ, θS, α, and αS, it 
would be necessary to include the correlation between θ  and θS, and between α  and αS.) 

It thus follows from Equation (H.3) that the estimate of the value of the measurand l may be obtained from the 
simple expression Sl d+ , where lS is the length of the standard at 20 °C as given in its calibration certificate 
and d is estimated by d , the arithmetic mean of n = 5 independent repeated observations. The combined 
standard uncertainty uc(l) of l is obtained by applying Equation (10) in 5.1.2 to Equation (H.3), as discussed 
below. 

NOTE In this and the other examples, for simplicity of notation, the same symbol is used for a quantity and its 
estimate. 

H.1.3 Contributory variances 

The pertinent aspects of this example as discussed in this and the following subclauses are summarized in 
Table H.1. 

Since it is assumed that δα  = 0 and δθ  = 0, the application of Equation (10) in 5.1.2 to Equation (H.3) yields 

( ) ( ) ( ) ( ) ( ) ( ) ( )
S

2 2 2 2 2 2 2 2 2 2 2 2 2
c S S Sdu l c u l c u d c u c u c u c uθ α θα α θ α θδ δ= + + + + δ + δ  (H.4) 

with 

( )S S S1 1c f l α θ α θ= ∂ ∂ = − δ ⋅ + ⋅ δ =  

1dc f d= ∂ ∂ =  

S S S 0c f lα α θ= ∂ ∂ = − δ =  

S 0c f lθ θ α= ∂ ∂ = − δ =  

Sc f lα α θδ = ∂ ∂δ = −  

S Sc f lθ θ αδ = ∂ ∂δ = −  

and thus 

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2
c S S S Su l u l u d l u l uθ α α θ= + + δ + δ  (H.5) 
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H.1.3.1 Uncertainty of the calibration of the standard, u(lS) 

The calibration certificate gives as the expanded uncertainty of the standard U = 0,075 µm and states that it 
was obtained using a coverage factor of k = 3. The standard uncertainty is then 

( ) ( )S 0,075 µm 3 25 nmu l = =  

H.1.3.2 Uncertainty of the measured difference in lengths, u(d) 

The pooled experimental standard deviation characterizing the comparison of l and lS was determined from 
the variability of 25 independent repeated observations of the difference in lengths of two standard end 
gauges and was found to be 13 nm. In the comparison of this example, five repeated observations were taken. 
The standard uncertainty associated with the arithmetic mean of these readings is then (see 4.2.4) 

( ) ( ) ( )13 nm 5 5,8 nmu d s d= = =  

According to the calibration certificate of the comparator used to compare l with lS, its uncertainty “due to 
random errors” is ±0,01 µm at a level of confidence of 95 percent and is based on 6 replicate measurements; 
thus the standard uncertainty, using the t-factor t95(5) = 2,57 for v = 6 − 1 = 5 degrees of freedom (see 
Annex G, Table G.2), is 

( ) ( )1 0,01µm 2,57 3,9 nmu d = =  

The uncertainty of the comparator “due to systematic errors” is given in the certificate as 0,02 µm at the “three 
sigma level”. The standard uncertainty from this cause may therefore be taken to be 

( ) ( )2 0,02 µm 3 6,7 nmu d = =  

The total contribution is obtained from the sum of the estimated variances: 

( ) ( ) ( ) ( )2 2 2 2 2
1 2 93 nmu d u d u d u d= + + =  

or 

( ) 9,7 nmu d =  

H.1.3.3 Uncertainty of the thermal expansion coefficient, u(αS) 

The coefficient of thermal expansion of the standard end gauge is given as αS = 11,5 × 10−6 °C−1 with an 
uncertainty represented by a rectangular distribution with bounds ±2 × 10−6 °C−1. The standard uncertainty is 
then [see Equation (7) in 4.3.7] 

( ) ( )6 1 6 1
S 2 10 C 3 1,2 10 Cu α − − − −= × ° = × °  

Since cαS
 = ∂f /∂αS = −lSδθ  = 0 as indicated in H.1.3, this uncertainty contributes nothing to the uncertainty  

of l in first order. It does, however, have a second-order contribution that is discussed in H.1.7. 
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Table H.1 — Summary of standard uncertainty components 

Standard 
uncertainty 
component 

Value of 
standard 

uncertainty 

 
ui(l) ≡ |ci |u(xi) 

u(xi) 

 
Source of uncertainty 

u(xi) 

 
ci ≡ ∂f /∂xi 

(nm) 

Degrees of 
freedom 

u(lS) Calibration of standard end 
gauge 

25 nm 1          25 18 

u(d ) Measured difference 
between end gauges 

 9,7 nm 1  9,7 25,6 

( )u d  repeated observations 5,8 nm   24

u(d1) random effects of 
comparator 

3,9 nm   5

u(d2) systematic effects of 
comparator 

6,7 nm   8

u(αS) Thermal expansion 
coefficient of standard end 
gauge 

1,2 × 10−6 °C−1 0 0  

u(θ ) Temperature of test bed 0,41 °C 0 0  
( )u θ  mean temperature of bed 0,2   °C    

u(∆) cyclic variation of 
temperature of room 

0,35 °C    

u(δα) Difference in expansion 
coefficients of end gauges 

0,58 × 10−6 °C−1 −lSθ   2,9  50 

u(δθ ) Difference in temperatures of 
end gauges 

0,029 °C −lSαS 16,6  2 

2 2 2
c

c

eff

( ) ( ) 1 002 nm

( ) 32 nm

( ) 16

iu l u l

u l

v l

= =

=

=

∑

 

H.1.3.4 Uncertainty of the deviation of the temperature of the end gauge, u(θ) 

The temperature of the test bed is reported as (19,9 ± 0,5) °C; the temperature at the time of the individual 
observations was not recorded. The stated maximum offset, ∆ = 0,5 °C, is said to represent the amplitude of 
an approximately cyclical variation of the temperature under a thermostatic system, not the uncertainty of the 
mean temperature. The value of the mean temperature deviation 

19,9 C 20 C= 0,1 Cθ = ° − ° − °  

is reported as having a standard uncertainty itself due to the uncertainty in the mean temperature of the test 
bed of 

( ) 0,2 Cu θ = °  

while the cyclic variation in time produces a U-shaped (arcsine) distribution of temperatures resulting in a 
standard uncertainty of 

( ) ( )0,5 C 2 0,35 Cu ∆ = ° = °  
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The temperature deviation θ  may be taken equal to θ , and the standard uncertainty of θ is obtained from 

( ) ( ) ( )2 2 2 20,165 Cu u uθ θ ∆= + = °  

which gives 

( ) 0,41 Cu θ = °  

Since cθ = ∂f /∂θ  = −lSδα = 0 as indicated in H.1.3, this uncertainty also contributes nothing to the uncertainty 
of l in first order; but it does have a second-order contribution that is discussed in H.1.7. 

H.1.3.5 Uncertainty of the difference in expansion coefficients, u(δα) 

The estimated bounds on the variability of δα are ±1 × 10−6 °C−1, with an equal probability of δα having any 
value within those bounds. The standard uncertainty is 

( ) ( )6 1 6 11 10 C 3 0,58 10 Cu α − − − −δ = × ° = × °  

H.1.3.6 Uncertainty of the difference in temperature of the gauges, u(δθ) 

The standard and the test gauge are expected to be at the same temperature, but the temperature difference 
could lie with equal probability anywhere in the estimated interval −0,05 °C to +0,05 °C. The standard 
uncertainty is 

( ) ( )0,05 C 3 0,029 Cu θδ = ° = °  

H.1.4 Combined standard uncertainty 

The combined standard uncertainty uc(l) is calculated from Equation (H.5). The individual terms are collected 
and substituted into this expression to obtain 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

22 2 2 22 6 1
c

22 26 1

25 nm 9,7 nm 0,05 m 0,1 C 0,58 10 C

0,05 m 11,5 10 C 0,029 C

u l − −

− −

= + + − ° × ° +

× ° °
 (H.6a) 

         ( ) ( ) ( ) ( )2 2 2 2 225 nm 9,7 nm 2,9 nm 16,6 nm 1002 nm= + + + =  (H.6b) 

or 

( )c 32 nmu l =  (H.6c) 

The dominant component of uncertainty is obviously that of the standard, u(lS) = 25 nm. 

H.1.5 Final result 

The calibration certificate for the standard end gauge gives lS = 50,000 623 mm as its length at 20 °C. The 
arithmetic mean d  of the five repeated observations of the difference in lengths between the unknown end 
gauge and the standard gauge is 215 nm. Thus, since Sl l d= +  (see H.1.2), the length l of the unknown end 
gauge at 20 °C is 50,000 838 mm. Following 7.2.2, the final result of the measurement may be stated as: 

l = 50,000 838 mm with a combined standard uncertainty uc = 32 nm. The corresponding relative 
combined standard uncertainty is uc/l = 6,4 × 10−7. 
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H.1.6 Expanded uncertainty 

Suppose that one is required to obtain an expanded uncertainty U99 = k99uc(l) that provides an interval having 
a level of confidence of approximately 99 percent. The procedure to use is that summarized in G.6.4, and the 
required degrees of freedom are indicated in Table H.1. These were obtained as follows: 

1) Uncertainty of the calibration of the standard, u(lS) [H.1.3.1]. The calibration certificate states that the 
effective degrees of freedom of the combined standard uncertainty from which the quoted expanded 
uncertainty was obtained is veff(lS) = 18. 

2) Uncertainty of the measured difference in lengths, u(d ) [H.1.3.2]. Although d  was obtained from five 
repeated observations, because ( )u d  was obtained from a pooled experimental standard deviation based 
on 25 observations, the degrees of freedom of ( )u d  is ( ) 25 1 24v d = − =  (see H.3.6, note). The degrees 
of freedom of u(d1), the uncertainty due to random effects on the comparator, is v(d1) = 6 − 1 = 5 because 
d1 was obtained from six repeated measurements. The ±0,02 µm uncertainty for systematic effects on the 
comparator may be assumed to be reliable to 25 percent, and thus the degrees of freedom from 
Equation (G.3) in G.4.2 is v(d2) = 8 (see the example of G.4.2). The effective degrees of freedom of u(d), 
veff(d), is then obtained from Equation (G.2b) in G.4.1: 

( )
( ) ( ) ( )
( )

( )
( )

( )
( )

( )

( )
( ) ( ) ( )

22 2 2 4
1 2

eff 4 4 4 44 4
1 2

1 2

9,7 nm
25,6

5,8 nm 3,9 nm 6,7 nm
24 5 8

u d u d u d
v d

u d u d u d
v d v dv d

⎡ ⎤+ +⎣ ⎦= = =

+ ++ +

 

3) Uncertainty of the difference in expansion coeficients, u(δα) [H.1.3.5]. The estimated bounds of 
±1 × 10−6 °C−1 on the variability of δα  are deemed to be reliable to 10 percent. This gives, from 
Equation (G.3) in G.4.2, v(δα) = 50. 

4) Uncertainty of the difference in temperatures of the gauges, u(δθ) [H.1.3.6]. The estimated interval 
−0,05 °C to +0,05 °C for the temperature difference δθ  is believed to be reliable only to 50 percent, which 
from Equation (G.3) in G.4.2 gives v(δθ) = 2. 

The calculation of veff(l) from Equation (G.2b) in G.4.1 proceeds in exactly the same way as for the calculation 
of veff(d) in 2) above. Thus from Equations (H.6b) and (H.6c) and the values for v given in 1) through 4), 

( ) ( )
( ) ( ) ( ) ( )

4

eff 4 4 4 4
32 nm

16,7
25 nm 9,7 nm 2,9 nm 16,6 nm

18 25,6 50 2

v l = =

+ + +

 

To obtain the required expanded uncertainty, this value is first truncated to the next lower integer, veff(l) = 16. 
It then follows from Table G.2 in Annex G that t99(16) = 2,92, and hence U99 = t99(16)uc(l) = 
2,92 × (32 nm) = 93 nm. Following 7.2.4, the final result of the measurement may be stated as: 

l = (50,000 838 ± 0,000 093) mm, where the number following the symbol ± is the numerical value of an 
expanded uncertainty U = kuc, with U determined from a combined standard uncertainty uc = 32 nm and a 
coverage factor k = 2,92 based on the t-distribution for v = 16 degrees of freedom, and defines an interval 
estimated to have a level of confidence of 99 percent. The corresponding relative expanded uncertainty is 
U/l = 1,9 × 10−6. 



JCGM 100:2008 

 

© JCGM 2008 – All rights reserved  85
 

H.1.7 Second-order terms 

The note to 5.1.2 points out that Equation (10), which is used in this example to obtain the combined standard 
uncertainty uc(l), must be augmented when the nonlinearity of the function Y = f (X1, X2, ..., XN) is so significant 
that the higher-order terms in the Taylor series expansion cannot be neglected. Such is the case in this 
example, and therefore the evaluation of uc(l) as presented up to this point is not complete. Application to 
Equation (H.3) of the expression given in the note to 5.1.2 yields in fact two distinct non-negligible 
second-order terms to be added to Equation (H.5). These terms, which arise from the quadratic term in the 
expression of the note, are 

( ) ( ) ( ) ( )2 2 2 2 2 2
S S Sl u u l u uα θ α θδ + δ  

but only the first of these terms contributes significantly to uc(l): 

( ) ( ) ( )( )( )6 1
S 0,05 m 0,58 10 C 0,41 C 11,7 nml u uα θ − −δ = × ° ° =  

( ) ( ) ( )( ) ( )6 1
S S 0,05 m 1,2 10 C 0,029 C 1,7 nml u uα θ − −δ = × ° ° =  

The second-order terms increase uc(l) from 32 nm to 34 nm. 

H.2 Simultaneous resistance and reactance measurement 

This example demonstrates the treatment of multiple measurands or output quantities determined 
simultaneously in the same measurement and the correlation of their estimates. It considers only the random 
variations of the observations; in actual practice, the uncertainties of corrections for systematic effects would 
also contribute to the uncertainty of the measurement results. The data are analysed in two different ways with 
each yielding essentially the same numerical values. 

H.2.1 The measurement problem 

The resistance R and the reactance X of a circuit element are determined by measuring the amplitude V of a 
sinusoidally-alternating potential difference across its terminals, the amplitude I of the alternating current 
passing through it, and the phase-shift angle φ  of the alternating potential difference relative to the alternating 
current. Thus the three input quantities are V, I, and φ  and the three output quantities — the measurands — 
are the three impedance components R, X, and Z. Since Z2 = R2 + X2, there are only two independent output 
quantities. 

H.2.2 Mathematical model and data 

The measurands are related to the input quantities by Ohm's law: 

cos ; sin ;V V VR X Z
I I I

φ φ= = =  (H.7) 

Consider that five independent sets of simultaneous observations of the three input quantities V, I, and φ  are 
obtained under similar conditions (see B.2.15), resulting in the data given in Table H.2. The arithmetic means 
of the observations and the experimental standard deviations of those means calculated from Equations (3) 
and (5) in 4.2 are also given. The means are taken as the best estimates of the expected values of the input 
quantities, and the experimental standard deviations are the standard uncertainties of those means. 

Because the means ,V  ,I  and φ  are obtained from simultaneous observations, they are correlated and the 
correlations must be taken into account in the evaluation of the standard uncertainties of the measurands R, X, 
and Z. The required correlation coefficients are readily obtained from Equation (14) in 5.2.2 using values of 

( , )s V I , ( , )s V φ , and ( , )s I φ  calculated from Equation (17) in 5.2.3. The results are included in Table H.2, 
where it should be recalled that r(xi, xj) = r(xj, xi) and r(xi, xi) = 1. 
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Table H.2 — Values of the input quantities V, I, and φ  obtained from five sets  
of simultaneous observations 

Set number Input quantities 

k V 
(V) 

I 
(mA) 

φ 
(rad) 

1 5,007 19,663 1,045 6 

2 4,994 19,639 1,043 8 

3 5,005 19,640 1,046 8 

4 4,990 19,685 1,042 8 

5 4,999 19,678 1,043 3 

Arithmetic mean V  = 4,999 0 I  = 19,661 0 φ  = 1,044 46 

Experimental standard 
deviation of mean ( )s V  = 0,003 2 ( )s I  = 0,009 5 ( )s φ  = 0,000 75 

Correlation coefficients 

 ( , )r V I  = −0,36 

 ( , )r V φ  = 0,86 

 ( , )r I φ  = −0,65 

H.2.3 Results: approach 1 

Approach 1 is summarized in Table H.3. 

The values of the three measurands R, X, and Z are obtained from the relations given in Equation (H.7) using 
the mean values ,V  ,I  and φ  of Table H.2 for V, I, and φ. The standard uncertainties of R, X, and Z are 
obtained from Equation (16) in 5.2.2 since, as pointed out above, the input quantities ,V  ,I  and φ  are 
correlated. As an example, consider / .Z V I=  Identifying V  with x1, I  with x2, and f with / ,Z V I=  
Equation (16) in 5.2.2 yields for the combined standard uncertainty of Z 

( ) ( ) ( ) ( ) ( ) ( )
22

2 2 2
c 2 2

1 12 ,V Vu Z u V u I u V u I r V I
I II I

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (H.8a) 

           
( ) ( ) ( ) ( ) ( )

2 2
2 2 22 ,

u V u I u V u I
Z Z Z r V I

V I V I

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (H.8b) 

or 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
c, r r r r r2 ,u Z u V u I u V u I r V I= + −  (H.8c) 

where ( ) ( )u V s V= , ( ) ( )u I s I= , and the subscript “r” in the last expression indicates that u is a relative 
uncertainty. Substitution of the appropriate values from Table H.2 into Equation (H.8a) then gives 
uc(Z) = 0,236 Ω. 

Because the three measurands or output quantities depend on the same input quantities, they too are 
correlated. The elements of the covariance matrix that describes this correlation may be written in general as 

( ) ( ) ( ) ( )
1 1

, ,
N N

l m
l m i j i j

i ji j

y y
u y y u x u x r x x

x x= =

∂ ∂
=

∂ ∂∑∑  (H.9) 
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where yl = fl(x1, x2, ..., xN) and ym = fm(x1, x2, ..., xN). Equation (H.9) is a generalization of Equation (F.2) in 
F.1.2.3 when the ql in that expression are correlated. The estimated correlation coefficients of the output 
quantities are given by r(yl, ym) = u(yl, ym)/u(yl)u(ym), as indicated in Equation (14) in 5.2.2. It should be 
recognized that the diagonal elements of the covariance matrix, u(yl, yl) ≡ u2(yl), are the estimated variances 
of the output quantities yl (see 5.2.2, Note 2) and that for m = l, Equation (H.9) is identical to Equation (16) in 
5.2.2. 

To apply Equation (H.9) to this example, the following identifications are made: 

( ) ( )1 1

2 2

3 3

3
i iy R x V u x s x

y X x I N
y Z x φ

= = =
= = =
= =

 

The results of the calculations of R, X, and Z and of their estimated variances and correlation coefficients are 
given in Table H.3. 

Table H.3 — Calculated values of the output quantities R, X, and Z: approach 1 

Measurand  
index 

l 

Relationship between 
estimate of measurand yl 

and input estimates xi 

Value of estimate yl, which 
is the result 

of measurement 

Combined standard 
uncertainty uc(yl) of result 

of measurement 

1 1 ( / ) cosy R V I φ= =  y1 = R = 127,732 Ω uc(R) = 0,071 Ω 
uc(R)/R = 0,06 × 10−2 

2 2 ( / ) siny X V I φ= =  y2 = X = 219,847 Ω uc(X) = 0,295 Ω 
uc(X)/X = 0,13 × 10−2 

3 3 /y Z V I= =  y3 = Z = 254,260 Ω uc(Z) = 0,236 Ω 
uc(Z)/Z = 0,09 × 10−2 

Correlation coefficients r(yl, ym) 
r(y1, y2) = r(R, X) = −0,588 
r(y1, y3) = r(R, Z) = −0,485 
r(y2, y3) = r(X, Z) =   0,993 

H.2.4 Results: approach 2 

Approach 2 is summarized in Table H.4. 

Since the data have been obtained as five sets of observations of the three input quantities V, I, and φ, it is 
possible to compute a value for R, X, and Z from each set of input data, and then take the arithmetic mean of 
the five individual values to obtain the best estimates of R, X, and Z. The experimental standard deviation of 
each mean (which is its combined standard uncertainty) is then calculated from the five individual values in 
the usual way [Equation (5) in 4.2.3]; and the estimated covariances of the three means are calculated by 
applying Equation (17) in 5.2.3 directly to the five individual values from which each mean is obtained. There 
are no differences in the output values, standard uncertainties, and estimated covariances provided by the two 
approaches except for second-order effects associated with replacing terms such as /V I  and cosφ  by /V I  
and cosφ . 

To demonstrate this approach, Table H.4 gives the values of R, X and Z calculated from each of the five sets 
of observations. The arithmetic means, standard uncertainties, and estimated correlation coefficients are then 
directly computed from these individual values. The numerical results obtained in this way are negligibly 
different from the results given in Table H.3. 
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Table H.4 — Calculated values of the output quantities R, X, and Z: approach 2 

Set number Individual values of measurands 

k R = (V/I) cosφ 
(Ω) 

X = (V/I) sinφ 
(Ω) 

Z = V/I 
(Ω) 

1 127,67 220,32 254,64 

2 127,89 219,79 254,29 

3 127,51 220,64 254,84 

4 127,71 218,97 253,49 

5 127,88 219,51 254,04 

Arithmetic mean 1 127,732y R= =  2 219,847y X= =  3 254,260y Z= =  

Experimental standard 
deviation of mean ( ) 0,071s R =  ( ) 0,295s X =  ( ) 0,236s Z =  

Correlation coefficients r(yl, ym) 

1 2( , ) ( , ) 0,588r y y r R X= = −  

1 3( , ) ( , ) 0,485r y y r R Z= = −  

2 3( , ) ( , ) 0,993r y y r X Z= =  

In the terminology of the Note to 4.1.4, approach 2 is an example of obtaining the estimate y from 
( )1

n
k kY Y n== ∑ , while approach 1 is an example of obtaining y from 1 2( , , ..., )Ny f X X X= . As pointed out 

in that note, in general, the two approaches will give identical results if f is a linear function of its input 
quantities (provided that the experimentally observed correlation coefficients are taken into account when 
implementing approach 1). If f is not a linear function, then the results of approach 1 will differ from those of 
approach 2 depending on the degree of nonlinearity and the estimated variances and covariances of the Xi. 
This may be seen from the expression 

( ) ( )
2

1 2
1 1

1, , ..., , ...
2

N N

N i j
i ji j

fy f X X X u X X
X X= =

∂= + +
∂ ∂∑∑  (H.10) 

where the second term on the right-hand side is the second-order term in the Taylor series expansion of f  
in terms of the iX  (see also 5.1.2, note). In the present case, approach 2 is preferred because it avoids the 
approximation 1 2( , , ..., )Ny f X X X=  and better reflects the measurement procedure used — the data were in 
fact collected in sets. 

On the other hand, approach 2 would be inappropriate if the data of Table H.2 represented n1 = 5 
observations of the potential difference V, followed by n2 = 5 observations of the current I, and then followed 
by n3 = 5 observations of the phase φ, and would be impossible if n1 ≠ n2 ≠ n3. (It is in fact poor measurement 
procedure to carry out the measurements in this way since the potential difference across a fixed impedance 
and the current through it are directly related.) 

If the data of Table H.2 are reinterpreted in this manner so that approach 2 is inappropriate, and if correlations 
among the quantities V, I, and φ  are assumed to be absent, then the observed correlation coefficients have no 
significance and should be set equal to zero. If this is done in Table H.2, Equation (H.9) reduces to the 
equivalent of Equation (F.2) in F.1.2.3, namely, 

( ) ( )2

1
,

N
l m

l m i
i ii

y y
u y y u x

x x=

∂ ∂
=

∂ ∂∑  (H.11) 

and its application to the data of Table H.2 leads to the changes in Table H.3 shown in Table H.5. 
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Table H.5 — Changes in Table H.3 under the assumption  
that the correlation coefficients of Table H.2 are zero 

Combined standard uncertainty uc(yl) of result of measurement 

uc(R) = 0,195 Ω 
uc(R)/R = 0,15 × 10−2 

uc(X) = 0,201 Ω 
uc(X)/X = 0,09 × 10−2 

uc(Z) = 0,204 Ω 
uc(Z)/Z = 0,08 × 10−2 

Correlation coefficients r(yl, ym) 

r(y1, y2) = r(R, X) = 0,056 
r(y1, y3) = r(R, Z) = 0,527 
r(y2, y3) = r(X, Z) = 0,878 

H.3 Calibration of a thermometer 

This example illustrates the use of the method of least squares to obtain a linear calibration curve and how the 
parameters of the fit, the intercept and slope, and their estimated variances and covariance, are used to 
obtain from the curve the value and standard uncertainty of a predicted correction. 

H.3.1 The measurement problem 

A thermometer is calibrated by comparing n = 11 temperature readings tk of the thermometer, each having 
negligible uncertainty, with corresponding known reference temperatures tR, k in the temperature range 21 °C 
to 27 °C to obtain the corrections bk = tR, k − tk to the readings. The measured corrections bk and measured 
temperatures tk are the input quantities of the evaluation. A linear calibration curve 

( ) ( )1 2 0b t y y t t= + −  (H.12) 

is fitted to the measured corrections and temperatures by the method of least squares. The parameters y1 and 
y2, which are respectively the intercept and slope of the calibration curve, are the two measurands or output 
quantities to be determined. The temperature t0 is a conveniently chosen exact reference temperature; it is 
not an independent parameter to be determined by the least-squares fit. Once y1 and y2 are found, along with 
their estimated variances and covariance, Equation (H.12) can be used to predict the value and standard 
uncertainty of the correction to be applied to the thermometer for any value t of the temperature. 

H.3.2 Least-squares fitting 

Based on the method of least squares and under the assumptions made in H.3.1 above, the output quantities 
y1 and y2 and their estimated variances and covariance are obtained by minimizing the sum 

( ) 2
1 2 0

1

n

k k
k

S b y y t t
=

⎡ ⎤= − − −⎣ ⎦∑  
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This leads to the following equations for y1, y2, their experimental variances s2(y1) and s2(y2), and their 
estimated correlation coefficient r(y1, y2) = s(y1, y2)/s(y1)s(y2), where s(y1, y2) is their estimated covariance: 

( )( ) ( )( )2

1
k k k k kb b

y
D

θ θ θ−
=
∑ ∑ ∑ ∑

 (H.13a) 

( )( )
2

k k k kn b b
y

D

θ θ−
=
∑ ∑ ∑

 (H.13b) 

( )
2 2

2
1

ks
s y

D
θ

= ∑  (H.13c) 

( )
2

2
2

ss y n
D

=  (H.13d) 

( )1 2 2
, k

k

r y y
n

θ

θ
= − ∑

∑
 (H.13e) 

( ) 2
2

2
k kb b t

s
n

⎡ ⎤−⎣ ⎦=
−

∑  (H.13f) 

( ) ( ) ( )2 2 22
k k k kD n n n t tθ θ θ θ= − = − = −∑ ∑ ∑ ∑  (H.13g) 

where all sums are from k = 1 to n, θk = tk − t0, ( )k nθ θ= ∑ , and ( )kt t n= ∑ ; [bk − b(tk)] is the difference 
between the measured or observed correction bk at the temperature tk and the correction b(tk) predicted by the 
fitted curve b(t) = y1 + y2(t − t0) at tk. The variance s2 is a measure of the overall uncertainty of the fit, where 
the factor n − 2 reflects the fact that because two parameters, y1 and y2, are determined by the n observations, 
the degrees of freedom of s2 is v = n − 2 (see G.3.3). 

H.3.3 Calculation of results 

The data to be fitted are given in the second and third columns of Table H.6. Taking t0 = 20 °C as the 
reference temperature, application of Equations (H.13a) to (H.13g) yields 

( )
( )

( )

1 1

2 2

1 2

0,171 2 C 0,002 9 C
0,002 18 0,000 67

, 0,930 0,003 5 C

y s y
y s y
r y y s

= − ° = °
= =

= − = °
 

The fact that the slope y2 is more than three times larger than its standard uncertainty provides some 
indication that a calibration curve and not a fixed average correction is required. 
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Table H.6 — Data used to obtain a linear calibration curve for a thermometer by the method  
of least squares 

Reading 
number 

Thermometer 
reading 

Observed 
correction 

Predicted 
correction 

Difference between observed 
and predicted correction 

k tk bk = tR, k − tk b(tk) bk − b(tk) 

 (°C) (°C) (°C) (°C) 

1 21,521 −0,171 −0,167 9 −0,003 1 

2 22,012 −0,169 −0,166 8 −0,002 2 

3 22,512 −0,166 −0,165 7 −0,000 3 

4 23,003 −0,159 −0,164 6 +0,005 6 

5 23,507 −0,164 −0,163 5 −0,000 5 

6 23,999 −0,165 −0,162 5 −0,002 5 

7 24,513 −0,156 −0,161 4 +0,005 4 

8 25,002 −0,157 −0,160 3 +0,003 3 

9 25,503 −0,159 −0,159 2 +0,000 2 

10 26,010 −0,161 −0,158 1 −0,002 9 

11 26,511 −0,160 −0,157 0 −0,003 0 

The calibration curve may then be written as 

( ) ( ) ( )( )0,171 2 29 C 0,002 18 67 20 Cb t t= − ° + − °  (H.14) 

where the numbers in parentheses are the numerical values of the standard uncertainties referred to the 
corresponding last digits of the quoted results for the intercept and slope (see 7.2.2). This equation gives the 
predicted value of the correction b(t) at any temperature t, and in particular the value b(tk) at t = tk. These 
values are given in the fourth column of the table while the last column gives the differences between the 
measured and predicted values, bk − b(tk). An analysis of these differences can be used to check the validity 
of the linear model; formal tests exist (see Reference [8]), but are not considered in this example. 

H.3.4 Uncertainty of a predicted value 

The expression for the combined standard uncertainty of the predicted value of a correction can be readily 
obtained by applying the law of propagation of uncertainty, Equation (16) in 5.2.2, to Equation (H.12). Noting 
that b(t) = f (y1, y2) and writing u(y1) = s(y1) and u(y2) = s(y2), one obtains 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )22 2 2
c 1 0 2 0 1 2 1 22 ,u b t u y t t u y t t u y u y r y y⎡ ⎤ = + − + −⎣ ⎦  (H.15) 

The estimated variance ( )2
cu b t⎡ ⎤⎣ ⎦  is a minimum at tmin = t0 − u(y1)r(y1, y2)/u(y2), which in the present case is 

tmin = 24,008 5 °C. 

As an example of the use of Equation (H.15), consider that one requires the thermometer correction and its 
uncertainty at t = 30 °C, which is outside the temperature range in which the thermometer was actually 
calibrated. Substituting t = 30 °C in Equation (H.14) gives 

( )30 C 0,149 4 Cb ° = − °  
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while Equation (H.15) becomes 

( ) ( ) ( ) ( ) ( ) ( )( )( )2 2 22
c

6 2

30 C 0,002 9 C 10 C 0,000 67 2 10 C 0,002 9 C 0,000 67 0,930

17,1 10 C

u b
−

⎡ ⎤° = ° + ° + ° ° −⎣ ⎦

= × °
 

or 

( )c 30 C 0,004 1 Cu b⎡ ⎤° = °⎣ ⎦  

Thus the correction at 30 °C is −0,149 4 °C, with a combined standard uncertainty of uc = 0,004 1 °C, and with 
uc having v = n − 2 = 9 degrees of freedom. 

H.3.5 Elimination of the correlation between the slope and intercept 

Equation (H.13e) for the correlation coefficient r(y1, y2) implies that if t0 is so chosen that 
1 1 0( ) 0,n n

k k k kt tθ= == − =∑ ∑  then r(y1, y2) = 0 and y1 and y2 will be uncorrelated, thereby simplifying the 
computation of the standard uncertainty of a predicted correction. Since 1 0n

k kθ= =∑  when 
( )0 1 ,n

k kt t t n== = ∑  and 24,008 5 Ct = °  in the present case, repeating the least-squares fit with 
0 24,008 5 Ct t= = °  would lead to values of y1 and y2 that are uncorrelated. (The temperature t  is also the 

temperature at which u2[b(t)] is a minimum — see H.3.4.) However, repeating the fit is unnecessary because 
it can be shown that 

( ) ( )1 2b t y y t t′= + −  (H.16a) 

( ) ( ) ( ) ( )22 2 2
c 1 2u b t u y t t u y⎡ ⎤ ′= + −⎣ ⎦  (H.16b) 

( )1 2, 0r y y′ =  (H.16c) 

where 

( )1 1 2 0y y y t t′ = + −  

( ) ( ) ( )0 1 1 2 2,t t s y r y y s y= −  

( ) ( ) ( )2 2 2
1 1 1 21 ,s y s y r y y⎡ ⎤′ = −⎣ ⎦  

and in writing Equation (H.16b), the substitutions u(y′1) = s(y′1) and u(y2) = s(y2) have been made [see 
Equation (H.15)]. 

Application of these relations to the results given in H.3.3 yields 

( ) ( ) ( )( )0,162 5 11 0,002 18 67 24,008 5 Cb t t= − + − °  (H.17a) 

( ) ( ) ( ) ( )2 2 22
c 0,001 1 24,008 5 C 0,000 67u b t t⎡ ⎤ = + − °⎣ ⎦  (H.17b) 

That these expressions give the same results as Equations (H.14) and (H.15) can be checked by repeating 
the calculation of b(30 °C) and uc[b(30 °C)]. The substitution of t = 30 °C into Equations (H.17a) and (H.17b) 
yields 

( )30 C 0,149 4 Cb ° = − °  

( )c 30 C 0,004 1 Cu b⎡ ⎤° = °⎣ ⎦  
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which are identical to the results obtained in H.3.4. The estimated covariance between two predicted 
corrections b(t1) and b(t2) may be obtained from Equation (H.9) in H.2.3. 

H.3.6 Other considerations 

The least-squares method can be used to fit higher-order curves to data points, and is also applicable to 
cases where the individual data points have uncertainties. Standard texts on the subject should be consulted 
for details [8]. However, the following examples illustrate two cases where the measured corrections bk are not 
assumed to be exactly known. 

1) Let each tk have negligible uncertainty, let each of the n values tR, k be obtained from a series of m 
repeated readings, and let the pooled estimate of variance for such readings based on a large amount of 
data obtained over several months be 2

ps . Then the estimated variance of each tR, k is 2 2
p 0/s m u=  and 

each observed correction bk = tR, k − tk has the same standard uncertainty u0. Under these circumstances 
(and under the assumption that there is no reason to believe that the linear model is incorrect), 2

0u  
replaces s2 in Equations (H.13c) and (H.13d). 

NOTE A pooled estimate of variance 2
ps  based on N series of independent observations of the same random 

variable is obtained from 

2

2 1
p

1

N

i i
i

N

i
i

v s
s

v

=

=

=
∑

∑
 

where 2
is  is the experimental variance of the i th series of ni independent repeated observations [Equation (4) in 

4.2.2] and has degrees of freedom vi = ni − 1. The degrees of freedom of 2
ps  is 1

N
i iv v==∑ . The experimental variance 

2
p /s m  (and the experimental standard deviation p /s m ) of the arithmetic mean of m independent observations 

characterized by the pooled estimate of variance 2
ps  also has v degrees of freedom. 

2) Suppose that each tk has negligible uncertainty, that a correction εk is applied to each of the n values tR, k, 
and that each correction has the same standard uncertainty ua. Then the standard uncertainty of each 
bk = tR, k − tk is also ua, and 2

1( )s y  is replaced by 2 2
1 a( )s y u+  and 2

1( )s y′  is replaced by 2 2
1 a( )s y u′ + . 

H.4 Measurement of activity 

This example is similar to example H.2, the simultaneous measurement of resistance and reactance, in that 
the data can be analysed in two different ways but each yields essentially the same numerical result. The first 
approach illustrates once again the need to take the observed correlations between input quantities into 
account. 

H.4.1 The measurement problem 

The unknown radon (222Rn) activity concentration in a water sample is determined by liquid-scintillation 
counting against a radon-in-water standard sample having a known activity concentration. The unknown 
activity concentration is obtained by measuring three counting sources consisting of approximately 5 g of 
water and 12 g of organic emulsion scintillator in vials of volume 22 ml: 

Source (a) a standard consisting of a mass mS of the standard solution with a known activity 
concentration; 

Source (b) a matched blank water sample containing no radioactive material, used to obtain the 
background counting rate; 

Source (c) the sample consisting of an aliquot of mass mx with unknown activity concentration. 
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Six cycles of measurement of the three counting sources are made in the order standard — blank — sample; 
and each dead-time-corrected counting interval T0 for each source during all six cycles is 60 minutes. 
Although the background counting rate cannot be assumed to be constant over the entire counting interval 
(65 hours), it is assumed that the number of counts obtained for each blank may be used as representative of 
the background counting rate during the measurements of the standard and sample in the same cycle. The 
data are given in Table H.7, where 

tS, tB, tx are the times from the reference time t = 0 to the midpoint of the dead-time-corrected 
counting intervals T0 = 60 min for the standard, blank, and sample vials, respectively; 
although tB is given for completeness, it is not needed in the analysis; 

CS, CB, Cx are the number of counts recorded in the dead-time-corrected counting intervals T0 = 60 min 
for the standard, blank, and sample vials, respectively. 

The observed counts may be expressed as 

SS B S 0 S e tC C A T m λε −= +  (H.18a) 

B 0 e xt
x x xC C A T m λε −= +  (H.18b) 

where 

ε is the liquid scintillation detection efficiency for 222Rn for a given source composition, 
assumed to be independent of the activity level; 

AS is the activity concentration of the standard at the reference time t = 0; 

Ax is the measurand and is defined as the unknown activity concentration of the sample at the 
reference time t = 0; 

mS is the mass of the standard solution; 

mx is the mass of the sample aliquot; 

λ is the decay constant for 222Rn: λ = (ln 2)/T1/2 = 1,258 94 × 10−4 min−1 (T1/2 = 5 505,8 min). 

Table H.7 — Counting data for determining the activity concentration  
of an unknown sample 

Cycle Standard Blank Sample 

k tS 
(min) 

CS 
(counts) 

tB 
(min) 

CB 
(counts) 

tx 
(min) 

Cx 
(counts) 

1 243,74 15 380 305,56 4 054 367,37 41 432 

2 984,53 14 978 1 046,10 3 922 1 107,66 38 706 

3 1 723,87 14 394 1 785,43 4 200 1 846,99 35 860 

4 2 463,17 13 254 2 524,73 3 830 2 586,28 32 238 

5 3 217,56 12 516 3 279,12 3 956 3 340,68 29 640 

6 3 956,83 11 058 4 018,38 3 980 4 079,94 26 356 
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Equations (H.18a) and (H.18b) indicate that neither the six individual values of CS nor of Cx given in Table H.7 
can be averaged directly because of the exponential decay of the activity of the standard and sample, and 
slight variations in background counts from one cycle to another. Instead, one must deal with the 
decay-corrected and background-corrected counts (or counting rates defined as the number of counts divided 
by T0 = 60 min). This suggests combining Equations (H.18a) and (H.18b) to obtain the following expression for 
the unknown concentration in terms of the known quantities: 

( )
( )
( )

( )

S

S

S S S B S

BS
S

S B

S B
S

S B

, , , , , , , ,

e

e

e

x

x

x x x x
t

x
t

x

t tx

x

A f A m m C C C t t

C Cm
A

m C C

m C C
A

m C C

λ

λ

λ

λ

−

=

−
=

−

−
=

−

 (H.19) 

where (Cx − CB)eλ tx and (CS − CB)eλ tS are, respectively, the background-corrected counts of the sample and 
the standard at the reference time t = 0 and for the time interval T0 = 60 min. Alternatively, one may simply 
write 

( ) S
S S S S

S
, , , , x

x x x
x

m R
A f A m m R R A

m R
= =  (H.20) 

where the background-corrected and decay-corrected counting rates Rx and RS are given by 

( )B 0 e xt
x xR C C T λ⎡ ⎤= −⎣ ⎦  (H.21a) 

( ) S
S S B 0 e tR C C T λ⎡ ⎤= −⎣ ⎦  (H.21b) 

H.4.2 Analysis of data 

Table H.8 summarizes the values of the background-corrected and decay-corrected counting rates RS and Rx 
calculated from Equations (H.21a) and (H.21b) using the data of Table H.7 and λ = 1,258 94 × 10−4 min−1 as 
given earlier. It should be noted that the ratio R = Rx /RS is most simply calculated from the expression 

( ) ( ) ( )S
B S B e xt t

xC C C C λ −⎡ ⎤− −⎣ ⎦  

The arithmetic means SR , xR , and R, and their experimental standard deviations S( )s R , ( )xs R , and ( )s R , are 
calculated in the usual way [Equations (3) and (5) in 4.2]. The correlation coefficient S( , )xr R R  is calculated from 
Equation (17) in 5.2.3 and Equation (14) in 5.2.2. 

Because of the comparatively small variability of the values of Rx and of RS, the ratio of means S/xR R  and 
the standard uncertainty S( / )xu R R  of this ratio are, respectively, very nearly the same as the mean ratio R  
and its experimental standard deviation ( )s R  as given in the last column of Table H.8 [see H.2.4 and 
Equation (H.10) therein]. However, in calculating the standard uncertainty S( / )xu R R , the correlation between 
Rx and RS as represented by the correlation coefficient S( , )xr R R  must be taken into account using 
Equation (16) in 5.2.2. [That equation yields for the relative estimated variance of S/xR R  the last three terms 
of Equation (H.22b).] 

It should be recognized that the respective experimental standard deviations of Rx and of RS, 6 ( )xs R  and 
S6 ( )s R , indicate a variability in these quantities that is two to three times larger than the variability implied by 

the Poisson statistics of the counting process; the latter is included in the observed variability of the counts 
and need not be accounted for separately. 
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Table H.8 — Calculation of decay-corrected and background-corrected counting rates 

Cycle 

k 

Rx 

(min−1) 

RS 

(min−1) 

tx − tS 

(min) 

R = Rx /RS 

1 652,46 194,65 123,63 3,352 0 

2 666,48 208,58 123,13 3,195 3 

3 665,80 211,08 123,12 3,154 3 

4 655,68 214,17 123,11 3,061 5 

5 651,87 213,92 123,12 3,047 3 

6 623,31 194,13 123,11 3,210 7 

 
xR  = 652,60 

( )xs R  = 6,42 

( ) /x xs R R  = 0,98 × 10−2 

SR  = 206,09 

S( )s R  = 3,79 

S S( ) /s R R  = 1,84 × 10−2 

 R  = 3,170 
( )s R  = 0,046 

( ) /s R R  = 1,44 × 10−2 

 
S/xR R  = 3,167 

S( / )xu R R  = 0,045 

S S( / ) /( / )x xu R R R R  = 1,42 × 10−2 

  

Correlation coefficient 

S( , )xr R R  = 0,646 

H.4.3 Calculation of final results 

To obtain the unknown activity concentration Ax and its combined standard uncertainty uc(Ax) from 
Equation (H.20) requires AS, mx, and mS and their standard uncertainties. These are given as 

( ) ( )

( ) ( )

( ) ( )

S
2

S S S

S
2

S S S

2

0,136 8 Bq g
0,001 8 Bq g; 1,32 10

5,019 2 g
0,005 0 g; 0,10 10

5,057 1 g
0,001 0 g; 0,02 10

x

x x x

A
u A u A A

m
u m u m m

m
u m u m m

−

−

−

=
= = ×

=
= = ×

=
= = ×

 

Other possible sources of uncertainty are evaluated to be negligible: 

⎯ standard uncertainties of the decay times, u(tS, k) and u(tx, k); 

⎯ standard uncertainty of the decay constant of 222Rn, u(λ) = 1 × 10−7 min−1. (The significant quantity is the 
decay factor exp[λ(tx − tS)], which varies from 1,015 63 for cycles k = 4 and 6 to 1,015 70 for cycle k = 1. 
The standard uncertainty of these values is u = 1,2 × 10−5); 

⎯ uncertainty associated with the possible dependence of the detection efficiency of the scintillation counter 
on the source used (standard, blank, and sample); 

⎯ uncertainty of the correction for counter dead-time and of the correction for the dependence of counting 
efficiency on activity level. 
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H.4.3.1 Results: approach 1 

As indicated earlier, Ax and uc(Ax) may be obtained in two different ways from Equation (H.20). In the first 
approach, Ax is calculated using the arithmetic means xR  and SR , which leads to 

S
S

S
0,430 0 Bq gx

x
x

m R
A A

m R
= =  (H.22a) 

Application of Equation (16) in 5.2.2 to this expression yields for the combined variance 2
c ( )xu A  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 22 2 2 2
S Sc S S

S2 2 2 2 2 2
SS S S

2 ,x xx x
x

xx x x

u R u R u R u Ru A u A u m u m
r R R

R RA A m m R R
= + + + + −  (H.22b) 

where, as noted in H.4.2, the last three terms give 2 2
S S( / ) / ( / )x xu R R R R , the estimated relative variance of 

S/xR R . Consistent with the discussion of H.2.4, the results in Table H.8 show that R  is not exactly equal to 
S/xR R ; and that the standard uncertainty S( / )xu R R  of S/xR R  is not exactly equal to the standard 

uncertainty ( )s R  of R . 

Substitution of the values of the relevant quantities into Equations (H.22a) and (H.22b) yields 

( )c 21,93 10x

x

u A
A

−= ×  

( )c 0,008 3 Bq gxu A =  

The result of the measurement may then be stated as: 

Ax = 0,430 0 Bq/g with a combined standard uncertainty of uc = 0,008 3 Bq/g. 

H.4.3.2 Results: approach 2 

In the second approach, which avoids the correlation between xR  and SR , Ax is calculated using the 
arithmetic mean R. Thus 

S
S 0,430 4 Bq gx

x

m
A A R

m
= =  (H.23a) 

The expression for 2
c ( )xu A  is simply 

( ) ( ) ( ) ( ) ( )22 2 2 2
c S S

2 2 2 2 2
S S

x x

x x

u Ru A u A u m u m

A A m m R
= + + +  (H.23b) 

which yields 

( )c 21,95 10x

x

u A
A

−= ×  

( )c 0,008 4 Bq gxu A =  

The result of the measurement may then be stated as: 

Ax = 0,430 4 Bq/g with a combined standard uncertainty of uc = 0,008 4 Bq/g. 

The effective degrees of freedom of uc can be evaluated using the Welch-Satterthwaite formula in the manner 
illustrated in H.1.6. 
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As in H.2, of the two results, the second is preferred because it avoids approximating the mean of a ratio of 
two quantities by the ratio of the means of the two quantities; and it better reflects the measurement procedure 
used — the data were in fact collected in separate cycles. 

Nevertheless, the difference between the values of Ax resulting from the two approaches is clearly small 
compared with the standard uncertainty ascribed to either one, and the difference between the two standard 
uncertainties is entirely negligible. Such agreement demonstrates that the two approaches are equivalent 
when the observed correlations are properly included. 

H.5 Analysis of variance 

This example provides a brief introduction to analysis of variance (ANOVA) methods. These statistical 
techniques are used to identify and quantify individual random effects in a measurement so that they may be 
properly taken into account when the uncertainty of the result of the measurement is evaluated. Although 
ANOVA methods are applicable to a wide range of measurements, for example, the calibration of reference 
standards, such as Zener voltage standards and standards of mass, and the certification of reference 
materials, ANOVA methods by themselves cannot identify systematic effects that might be present. 

There are many different models included under the general name of ANOVA. Because of its importance, the 
specific model discussed in this example is the balanced nested design. The numerical illustration of this 
model involves the calibration of a Zener voltage standard; the analysis should be relevant to a variety of 
practical measurement situations. 

ANOVA methods are of special importance in the certification of reference materials (RMs) by interlaboratory 
testing, a topic covered thoroughly in ISO Guide 35 [19] (see H.5.3.2 for a brief description of such RM 
certification). Since much of the material contained in ISO Guide 35 is in fact broadly applicable, that 
publication may be consulted for additional details concerning ANOVA, including unbalanced nested designs. 
References [15] and [20] may be similarly consulted. 

H.5.1 The measurement problem 

Consider a nominally 10 V Zener voltage standard that is calibrated against a stable voltage reference over a 
two-week period. On each of J days during the period, K independent repeated observations of the potential 
difference VS of the standard are made. If Vjk denotes the k th observation of VS (k = 1, 2, ..., K) on the j th day 
( j = 1, 2, ..., J), the best estimate of the potential difference of the standard is the arithmetic mean V  of the JK 
observations [see Equation (3) in 4.2.1], 

S
1 1

1 J K

jk
j k

V V V
JK = =

= =∑∑  (H.24a) 

The experimental standard deviation of the mean ( )s V , which is a measure of the uncertainty of V  as an 
estimate of the potential difference of the standard, is obtained from [see Equation (5) in 4.2.3] 

( ) ( ) ( )22

1 1

1
1

J K

jk
j k

s V V V
JK JK = =

= −
− ∑∑  (H.24b) 

NOTE It is assumed throughout this example that all corrections applied to the observations to compensate for 
systematic effects have negligible uncertainties or their uncertainties are such that they can be taken into account at the 
end of the analysis. A correction in this latter category, and one that can itself be applied to the mean of the observations 
at the end of the analysis, is the difference between the certified value (assumed to have a given uncertainty) and the 
working value of the stable voltage reference against which the Zener voltage standard is calibrated. Thus the estimate of 
the potential difference of the standard obtained statistically from the observations is not necessarily the final result of the 
measurement; and the experimental standard deviation of that estimate is not necessarily the combined standard 
uncertainty of the final result. 
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The experimental standard deviation of the mean ( )s V  as obtained from Equation (H.24b) is an appropriate 
measure of the uncertainty of V  only if the day-to-day variability of the observations is the same as the 
variability of the observations made on a single day. If there is evidence that the between-day variability is 
significantly larger than can be expected from the within-day variability, use of this expression could lead to a 
considerable understatement of the uncertainty of V . Two questions thus arise: How should one decide if the 
between-day variability (characterized by a between-day component of variance) is significant in comparison 
with the within-day variability (characterized by a within-day component of variance) and, if it is, how should 
one evaluate the uncertainty of the mean? 

H.5.2 A numerical example 

H.5.2.1 Data which allow the above questions to be addressed are given in Table H.9, where 

J = 10 is the number of days on which potential-difference observations were made; 

K = 5 is the number of potential-difference observations made on each day; 

1

1 K

j jk
k

V V
K =

= ∑  (H.25a) 

is the arithmetic mean of the K = 5 potential-difference observations made on the j th day (there are 
J = 10 such daily means); 

1 1 1

1 1J J K

j jk
j j k

V V V
J JK= = =

= =∑ ∑∑  (H.25b) 

is the arithmetic mean of the J = 10 daily means and thus the overall mean of the JK = 50 
observations; 

( ) ( )22

1

1
1

K

jk jk j
k

s V V V
K =

= −
− ∑  (H.25c) 

is the experimental variance of the K = 5 observations made on the j th day (there are J = 10 such 
estimates of variance); and 

( ) ( )22

1

1
1

J

j j
j

s V V V
J =

= −
− ∑  (H.25d) 

is the experimental variance of the J = 10 daily means (there is only one such estimate of variance). 

H.5.2.2 The consistency of the within-day variability and between-day variability of the observations can 
be investigated by comparing two independent estimates of 2

Wσ , the within-day component of variance (that 
is, the variance of observations made on the same day). 

The first estimate of 2
Wσ , denoted by 2

as , is obtained from the observed variation of the daily means jV . Since 
jV  is the average of K observations, its estimated variance 2( ),js V  under the assumption that the 

between-day component of variance is zero, estimates 2
W / Kσ . It then follows from Equation (H.25d) that 

( ) ( )22 2
a

11

J

j j
j

Ks Ks V V V
J =

= = −
− ∑  (H.26a) 

which is an estimate of 2
Wσ  having va = J − 1 = 9 degrees of freedom. 
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The second estimate of 2
Wσ , denoted by 2

bs , is the pooled estimate of variance obtained from the J = 10 
individual values of s2(Vjk) using the equation of the note to H.3.6, where the ten individual values are 
calculated from Equation (H.25c). Because the degrees of freedom of each of these values is vi = K − 1, the 
resulting expression for 2

bs  is simply their average. Thus 

( ) ( ) ( ) ( )22 2 2
b

1 1 1

1 1
1

J J K

jk jk jk j
j j k

s s V s V V V
J J K= = =

= = = −
−∑ ∑∑  (H.26b) 

which is an estimate of 2
Wσ  having vb = J(K − 1) = 40 degrees of freedom. 

The estimates of 2
Wσ  given by Equations (H.26a) and (H.26b) are 2 2

a (128 µV)s =  and 2 2
b (85 µV) ,s =  

respectively (see Table H.9). Since the estimate 2
as  is based on the variability of the daily means while the 

estimate 2
bs  is based on the variability of the daily observations, their difference indicates the possible 

presence of an effect that varies from one day to another but that remains relatively constant when 
observations are made on any single day. The F-test is used to test this possibility, and thus the assumption 
that the between-day component of variance is zero. 

H.5.2.3 The F-distribution is the probability distribution of the ratio 2 2
a b a a b b( , ) ( ) / ( )F v v s v s v=  of two 

independent estimates, 2
a a( )s v  and 2

b b( )s v , of the variance σ 2 of a normally distributed random variable [15]. 
The parameters va and vb are the respective degrees of freedom of the two estimates and 0 u F(va, vb) < ∞. 
Values of F are tabulated for different values of va and vb and various quantiles of the F-distribution. A value  
of F(va, vb) > F0,95 or F(va, vb) > F0,975 (the critical value) is usually interpreted as indicating that 2

a a( )s v  is 
larger than 2

b b( )s v  by a statistically significant amount; and that the probability of a value of F as large as that 
observed, if the two estimates were estimates of the same variance, is less than 0,05 or 0,025, respectively. 
(Other critical values may also be chosen, such as F0,99.) 
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H.5.2.4 The application of the F-test to the present numerical example yields 

( ) ( )
( )

( )
( )

2 22
a

a b 2 22b

5 57 µV
, 2,25

85 µV

j

jk

Ks Vs
F v v

s s V
= = = =  (H.27) 

with va = J − 1 = 9 degrees of freedom in the numerator and vb = J(K − 1) = 40 degrees of freedom in the 
denominator. Since F0,95(9,40) = 2,12 and F0,975(9,40) = 2,45, it is concluded that there is a statistically 
significant between-day effect at the 5 percent level of significance but not at the 2,5 percent level. 

H.5.2.5 If the existence of a between-day effect is rejected because the difference between 2
as  and 2

bs  is 
not viewed as statistically significant (an imprudent decision because it could lead to an underestimate of the 
uncertainty), the estimated variance 2( )s V  of V  should be calculated from Equation (H.24b). That relation is 
equivalent to pooling the estimates 2

as  and 2
bs  (that is, taking a weighted average of 2

as  and 2
bs , each 

weighted by its respective degrees of freedom va and vb — see H.3.6, note) to obtain the best estimate of the 
variance of the observations; and dividing that estimate by JK, the number of observations, to obtain the best 
estimate 2( )s V  of the variance of the mean of the observations. Following this procedure one obtains 

( ) ( ) ( )
( )

( ) ( )
( )( )( )

2 22 2
a b2 1 1 9 128 µV 40 85 µV

1 10 5 49
J s J K s

s V
JK JK

− + − +
= =

−
 (H.28a) 

( ) ( ) ( )22 13 µV , or 13 µVs V s V= =  (H.28b) 

with ( )s V  having JK − 1 = 49 degrees of freedom. 

If it is assumed that all corrections for systematic effects have already been taken into account and that all 
other components of uncertainty are insignificant, then the result of the calibration can be stated as 
VS = V = 10,000 097 V (see Table H.9), with a combined standard uncertainty of ( )s V = uc = 13 µV, and with 
uc having 49 degrees of freedom. 

NOTE 1 In practice, there would very likely be additional components of uncertainty that were significant and therefore 
would have to be combined with the component of uncertainty obtained statistically from the observations (see H.5.1, 
note). 

NOTE 2 Equation (H.28a) for 2( )s V  can be shown to be equivalent to Equation (H.24b) by writing the double sum, 
denoted by S, in that equation as 

( ) ( ) ( ) ( )
2

2 2
a b

1 1
1 1

J K

jk j j
j k

S V V V V J s J K s
= =

⎡ ⎤= − + − = − + −⎣ ⎦∑∑  

H.5.2.6 If the existence of a between-day effect is accepted (a prudent decision because it avoids a 
possible underestimate of the uncertainty) and it is assumed to be random, then the variance 2( )js V  
calculated from the J = 10 daily means according to Equation (H.25d) estimates not 2

W / Kσ  as postulated in 
H.5.2.2, but 2 2

W B/ Kσ σ+ , where 2
Bσ  is the between-day random component of variance. This implies that 

( )2 2 2
w Bjs V s K s= +  (H.29) 

where 2
ws  estimates 2

wσ  and 2
Bs  estimates 2

Bσ . Since 2 ( )jks V  calculated from Equation (H.26b) depends 
only on the within-day variability of the observations, one may take 2 2

w ( ).jks s V=  Thus the ratio 
2 2( ) ( )/j jkKs V s V  used for the F-test in H.5.2.4 becomes 

( )
( )

( )
( )

2 22 2
w B

2 22 w

5 57 µV
2,25

85 µV

j

jk

K s V s K s
F

ss V

+
= = = =  (H.30) 
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which then leads to 

( ) ( )

( )

2 2
2
B

22
B B43 µV , or 43 µV

j jkKs V s V
s

K

s s

−
=

= =

 (H.31a) 

( ) ( )22 2
w w85 µV , or 85 µVjks s V s= = =  (H.31b) 

The estimated variance of V  is obtained from 2( )js V , Equation (H.25d), because 2( )js V  properly reflects 
both the within-day and between-day random components of variance [see Equation (H.29)]. Thus 

( ) ( )
( ) ( )

2 2

257 µV 10, or 18 µV

js V s V J

s V

=

= =
 (H.32) 

with ( )s V  having J − 1 = 9 degrees of freedom. 

The degrees of freedom of 2
ws  (and thus sw) is J(K − 1) = 40 [see Equation (H.26b)]. The degrees of freedom 

of 2
Bs  (and thus sB) is the effective degrees of freedom of the difference 2 2 2

B ( ) ( ) /j jks s V s V K= −  
[Equation (H.31a)], but its estimation is problematic. 

H.5.2.7 The best estimate of the potential difference of the voltage standard is then 
VS = V = 10,000 097 V, with ( )s V = uc = 18 µV as given in Equation (H.32). This value of uc and its 9 degrees 
of freedom are to be compared with uc = 13 µV and its 49 degrees of freedom, the result obtained in H.5.2.5 
[Equation (H.28b)] when the existence of a between-day effect was rejected. 

In a real measurement an apparent between-day effect should be further investigated, if possible, in order to 
determine its cause and whether a systematic effect is present that would negate the use of ANOVA methods. 
As pointed out at the beginning of this example, ANOVA techniques are designed to identify and evaluate 
components of uncertainty arising from random effects; they cannot provide information about components 
arising from systematic effects. 

H.5.3 The role of ANOVA in measurement 

H.5.3.1 This voltage standard example illustrates what is generally termed a balanced, one-stage nested 
design. It is a one-stage nested design because there is one level of “nesting” of the observations with one 
factor, the day on which observations are made, being varied in the measurement. It is balanced because the 
same number of observations is made on each day. The analysis presented in the example can be used to 
determine if there is an “operator effect”, an “instrument effect”, a “laboratory effect”, a “sample effect”, or even 
a “method effect” in a particular measurement. Thus in the example, one might imagine replacing the 
observations made on the J different days by observations made on the same day but by J different operators; 
the between-day component of variance becomes then a component of variance associated with different 
operators. 

H.5.3.2 As noted in H.5, ANOVA methods are widely used in the certification of reference materials (RMs) 
by interlaboratory testing. Such certification usually involves having a number of independent, equally 
competent laboratories measure samples of a material for the property for which the material is to be certified. 
It is generally assumed that the differences between individual results, both within and between laboratories, 
are statistical in nature regardless of the causes. Each laboratory mean is considered an unbiased estimate of 
the property of the material, and usually the unweighted mean of the laboratory means is assumed to be the 
best estimate of that property. 

An RM certification might involve I different laboratories, each of which measures the requisite property of  
J different samples of the material, with each measurement of a sample consisting of K independent repeated 
observations. Thus the total number of observations is IJK and the total number of samples is IJ. This is an 



JCGM 100:2008 

 

104  © JCGM 2008 – All rights reserved
 

example of a balanced, two-stage nested design analogous to the one-stage voltage-standard example above. 
In this case, there are two levels of “nesting” of the observations with two different factors, sample and 
laboratory, being varied in the measurement. The design is balanced because each sample is observed the 
same number of times (K) in each laboratory and each laboratory measures the same number of samples (J). 
In further analogy with the voltage-standard example, in the RM case the purpose of the analysis of the data is 
to investigate the possible existence of a between-samples effect and a between-laboratories effect, and to 
determine the proper uncertainty to assign to the best estimate of the value of the property to be certified. In 
keeping with the previous paragraph, that estimate is assumed to be the mean of the I laboratory means, 
which is also the mean of the IJK observations. 

H.5.3.3 The importance of varying the input quantities upon which a measurement result depends so that 
its uncertainty is based on observed data evaluated statistically is pointed out in 3.4.2. Nested designs and the 
analysis of the resulting data by ANOVA methods can be successfully used in many measurement situations 
encountered in practice. 

Nonetheless, as indicated in 3.4.1, varying all input quantities is rarely feasible due to limited time and 
resources; at best, in most practical measurement situations, it is only possible to evaluate a few components 
of uncertainty using ANOVA methods. As pointed out in 4.3.1, many components must be evaluated by 
scientific judgement using all of the available information on the possible variability of the input quantities in 
question; in many instances an uncertainty component, such as arises from a between-samples effect, a 
between-laboratories effect, a between-instruments effect, or a between-operators effect, cannot be evaluated 
by the statistical analysis of series of observations but must be evaluated from the available pool of 
information. 

H.6 Measurements on a reference scale: hardness 

Hardness is an example of a physical concept that cannot be quantified without reference to a method of 
measurement; it has no unit that is independent of such a method. The quantity “hardness” is unlike classical 
measurable quantities in that it cannot be entered into algebraic equations to define other measurable 
quantities (though it is sometimes used in empirical equations that relate hardness to another property for a 
category of materials). Its magnitude is determined by a conventional measurement, that of a linear dimension 
of an indentation in a block of the material of interest, or sample block. The measurement is made according 
to a written standard, which includes a description of the “indentor”, the construction of the machine by which 
the indentor is applied, and the way in which the machine is to be operated. There is more than one written 
standard, so there is more than one scale of hardness. 

The hardness reported is a function (depending on the scale) of the linear dimension that is measured. In the 
example given in this subclause, it is a linear function of the arithmetic mean or average of the depths of five 
repeated indentations, but for some other scales the function is nonlinear. 

Realizations of the standard machine are kept as national standards (there is no international standard 
realization); a comparison between a particular machine and the national standard machine is made using a 
transfer-standard block. 

H.6.1 The measurement problem 

In this example, the hardness of a sample block of material is determined on the scale “Rockwell C” using a 
machine that has been calibrated against the national standard machine. The scale unit of Rockwell-C 
hardness is 0,002 mm, with hardness on that scale defined as 100 × (0,002 mm) minus the average of the 
depths, measured in mm, of five indentations. The value of that quantity divided by the Rockwell scale unit 
0,002 mm is called the “HRC hardness index”. In this example, the quantity is called simply “hardness”, 
symbol hRockwell C, and the numerical value of hardness expressed in Rockwell units of length is called the 
“hardness index”, HRockwell C. 
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H.6.2 Mathematical model 

To the average of the depths of the indentations made in the sample block by the machine used to determine 
its hardness, or calibration machine, must be added corrections to determine the average of the depths of the 
indentations that would have been made in the same block by the national standard machine. Thus 

( )
( )

Rockwell C c b S

c b S

, , ,

100 0,002 mm

h f d

d

∆ ∆ ∆

∆ ∆ ∆

=

= − − − −
 (H.33a) 

( )Rockwell C Rockwell C 0,002 mmH h=  (H.33b) 

where 

d  is the average of the depths of five indentations made by the calibration machine in the sample 
block; 

∆c is the correction obtained from a comparison of the calibration machine with the national standard 
machine using a transfer-standard block, equal to the average of the depths of 5m indentations made 
by the national standard machine in this block, minus the average of the depths of 5n indentations 
made in the same block by the calibration machine; 

∆b is the difference in hardness (expressed as a difference of average depth of indentation) between the 
two parts of the transfer-standard block used respectively for indentations by the two machines, 
assumed zero; and 

∆S is the error due to the lack of repeatability of the national standard machine and the incomplete 
definition of the quantity hardness. Although ∆S must be assumed to be zero, it has a standard 
uncertainty associated with it of u(∆S). 

Since the partial derivatives, ∂f /∂ ,d  ∂f /∂∆c, ∂f /∂∆b, and ∂f /∂∆S of the function of Equation (H.33a) are all 
equal to −1, the combined standard uncertainty c ( )u h  of the hardness of the sample block as measured by the 
calibration machine is simply given by 

( ) ( ) ( ) ( ) ( )2 2 2 2 2
c c b Su h u d u u u∆ ∆ ∆= + + +  (H.34) 

where for simplicity of notation h ≡ hRockwell C. 

H.6.3 Contributory variances 

H.6.3.1 Uncertainty of the average depth of indentation d  of the sample block, ( )u d  

Uncertainty of repeated observations. Strict repetition of an observation is not possible because a new 
indentation cannot be made on the site of an earlier one. Since each indentation must be made on a different 
site, any variation in the results includes the effect of variations in hardness between different sites. Thus ( )u d , 
the standard uncertainty of the average of the depths of five indentations in the sample block by the calibration 
machine, is taken as p( ) / 5ks d , where sp(dk) is the pooled experimental standard deviation of the depths  
of indentations determined by “repeated” measurements on a block known to have very uniform hardness 
(see 4.2.4). 

Uncertainty of indication. Although the correction to d  due to the display of the calibration machine is zero, 
there is an uncertainty in d  due to the uncertainty of the indication of depth due to the resolution δ  of the 
display given by u2(δ) = δ2/12 (see F.2.2.1). The estimated variance of d  is thus 

( ) ( )2 2 25 12ku d s d δ= +  (H.35) 
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H.6.3.2 Uncertainty of the correction for the difference between the two machines, u(∆c) 

As indicated in H.6.2, ∆c is the correction for the difference between the national standard machine and the 
calibration machine. This correction may be expressed as ∆c = z′S − z′, where ( )1S S,

m
i iz z m=′ = Σ  is the 

average depth of the 5m indentations made by the national standard machine in the transfer-standard block; 
and ( )1

n
i iz z n=′ = Σ  is the average depth of the 5n indentations made in the same block by the calibration 

machine. Thus, assuming that for the comparison the uncertainty due to the resolution of the display of each 
machine is negligible, the estimated variance of ∆c is 

( ) ( ) ( )2 2
av S av2

c
s z s z

u
m n

∆ = +  (H.36) 

where 

1
2 2
av S S,( ) ( )m

i is z s z m=⎡ ⎤= ⎣ ⎦Σ  is the average of the experimental variances of the means of each of the 
m series of indentations zS, ik made by the standard machine; 

1
2 2
av ( ) ( )n

i is z s z n=⎡ ⎤= ⎣ ⎦Σ  is the average of the experimental variances of the means of each of the 
n series of indentations zik made by the calibration machine. 

NOTE The variances 2
av S( )s z  and 2

av( )s z  are pooled estimates of variance — see the discussion of 
Equation (H.26b) in H.5.2.2. 

H.6.3.3 Uncertainty of the correction due to variations in the hardness of the transfer-standard 
block, u(∆b) 

OIML International Recommendation R 12, Verification and calibration of Rockwell C hardness standardized 
blocks, requires that the maximum and minimum depths of indentation obtained from five measurements on 
the transfer-standard block shall not differ by more than a fraction x of the average depth of indentation, where 
x is a function of the hardness level. Let, therefore, the maximum difference in the depths of indentation over 
the entire block be xz′, where z′ is as defined in H.6.3.2 with n = 5. Also let the maximum difference be 
described by a triangular probability distribution about the average value xz′/2 (on the likely assumption that 
values near the central value are more probable than extreme values — see 4.3.9). Then, if in Equation (9b) 
in 4.3.9 a = xz′/2, the estimated variance of the correction to the average depth of indentation due to 
differences of the hardnesses presented respectively to the standard machine and the calibration machine is 

( ) ( )22
b 24u x z∆ ′=  (H.37) 

As indicated in H.6.2, it is assumed that the best estimate of the correction ∆b itself is zero. 

H.6.3.4 Uncertainty of the national standard machine and the definition of hardness, u(∆S) 

The uncertainty of the national standard machine together with the uncertainty due to incomplete definition of 
the quantity hardness is reported as an estimated standard deviation u(∆S) (a quantity of dimension length). 

H.6.4 The combined standard uncertainty, uc(h) 

Collection of the individual terms discussed in H.6.3.1 to H.6.3.4 and their substitution into Equation (H.34) 
yields for the estimated variance of the measurement of hardness 

( ) ( ) ( ) ( ) ( ) ( )
22 2 22

av S av2 2
c S5 12 24

ks d s z s z xz
u h u

m n
δ ∆

′
= + + + + +  (H.38) 

and the combined standard uncertainty is uc(h). 
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H.6.5 Numerical example 

The data for this example are summarized in Table H.10. 

Table H.10 — Summary of data for determining the hardness of a sample block  
on the scale Rockwell C 

Source of uncertainty Value 

Average depth d  of 5 indentations made by the calibration machine in the sample block: 
0,072 mm 

36,0 Rockwell scale unit 

Indicated hardness index of the sample block from the 5 indentations: 
HRockwell C = hRockwell C /(0,002 mm) = [100(0,002 mm) − 0,072 mm]/(0,002 mm) 
(see H.6.1) 

64,0 HRC 

Pooled experimental standard deviation sp(dk) of the depths of indentations made by 
the calibration machine in a block having uniform hardness 

0,45 Rockwell scale unit 

Resolution δ  of the display of the calibration machine 0,1 Rockwell scale unit 

av S( )s z , square root of the average of the experimental variances of the means of 
m series of indentations made by the national standard machine in the transfer-
standard block 

0,10 Rockwell scale unit, m = 6 

av( )s z , square root of the average of the experimental variances of the means of 
n series of indentations made by the calibration machine in the transfer-standard block 

0,11 Rockwell scale unit, n = 6 

Permitted fractional variation x of the depth of penetration in the transfer-standard block 1,5 × 10−2 

Standard uncertainty u(∆S) of the national standard machine and definition of hardness 0,5 Rockwell scale unit 

The scale is Rockwell C, designated HRC. The Rockwell scale unit is 0,002 mm, and thus in Table H.10  
and in the following, it is understood that (for example) “36,0 Rockwell scale unit” means 
36,0 × (0,002 mm) = 0,072 mm and is simply a convenient way of expressing the data and results. 

If the values for the relevant quantities given in Table H.10 are substituted into Equation (H.38), one obtains 
the following two expressions: 

( ) ( ) ( )

( )

22 2 2 2 22 2
c

2

0,015 36,00,45 0,1 0,10 0,11 0,5 Rockwell scale unit
5 12 6 6 24

0,307 Rockwell scale unit

u h
⎤⎡ × ⎥= + + + + +⎢
⎥⎢⎣ ⎦

=

 

( )c 0,55 Rockwell scale unit 0,001 1 mmu h = =  

where for the purpose of the calculation of uncertainty it is adequate to take 36,0z d′ = =  Rockwell scale unit. 

Thus, if it is assumed that ∆c = 0, the hardness of the sample block is 

hRockwell C = 64,0 Rockwell scale unit or 0,128 0 mm with a combined standard uncertainty of uc = 0,55 
Rockwell scale unit or 0,001 1 mm. 

The hardness index of the block is hRockwell C/(0,002 mm) = (0,128 0 mm)/(0,002 mm), or 

HRockwell C = 64,0 HRC with a combined standard uncertainty of uc = 0,55 HRC. 
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In addition to the component of uncertainty due to the national standard machine and the definition of 
hardness, u(∆S) = 0,5 Rockwell scale unit, the significant components of uncertainty are those of the 
repeatability of the machine, p( ) / 5 0,20ks d =  Rockwell scale unit; and the variation of the hardness of the 
transfer-standard block, which is (xz′)2/24 = 0,11 Rockwell scale unit. The effective degrees of freedom of uc 
can be evaluated using the Welch-Satterthwaite formula in the manner illustrated in H.1.6. 
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Annex J* 
 

Glossary of principal symbols 

a half-width of a rectangular distribution of possible values of input quantity Xi: 

( ) 2a a a+ −= −  

a+ upper bound, or upper limit, of input quantity Xi 
a− lower bound, or lower limit, of input quantity Xi 
b+ upper bound, or upper limit, of the deviation of input quantity Xi from its estimate xi: 

ib a x+ += −  

b− lower bound, or lower limit, of the deviation of input quantity Xi from its estimate xi: 

ib x a− −= −  

ci partial derivative or sensitivity coefficient: 

i ic f x≡ ∂ ∂  

f functional relationship between measurand Y and input quantities Xi on which Y depends, and 
between output estimate y and input estimates xi on which y depends 

∂f /∂xi partial derivative with respect to input quantity Xi of functional relationship f  between measurand 
Y and input quantities Xi on which Y depends, evaluated with estimates xi for the Xi: 

, , ...,1 2i i x x xN
f x f X∂ ∂ = ∂ ∂  

k coverage factor used to calculate expanded uncertainty U = kuc(y) of output estimate y from its 
combined standard uncertainty uc(y), where U defines an interval Y = y ± U having a high level 
of confidence 

kp coverage factor used to calculate expanded uncertainty Up = kpuc(y) of output estimate y from its 
combined standard uncertainty uc(y), where Up defines an interval Y = y ± Up having a high, 
specified level of confidence p 

n number of repeated observations 
N number of input quantities Xi on which measurand Y depends 
p probability; level of confidence: 

0 1pu u  

q randomly varying quantity described by a probability distribution 
arithmetic mean or average of n independent repeated observations qk of randomly-varying 
quantity q 

q  

estimate of the expectation or mean µq of the probability distribution of q 

____________________________  

* Footnote to the 2008 version: 
When the GUM was first published, there was an editorial rule in effect which prohibited the use of an Annex I. That is why 
the annexes go from Annex H directly to Annex J. 
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qk k th independent repeated observation of randomly-varying quantity q 

r(xi, xj) estimated correlation coefficient associated with input estimates xi and xj that estimate input 
quantities Xi and Xj: 

( ) ( ) ( ) ( ), ,i j i j i jr x x u x x u x u x⎡ ⎤= ⎣ ⎦  

( ),i jr X X  estimated correlation coefficient of input means iX  and jX , determined from n independent 
pairs of repeated simultaneous observations Xi, k and Xj, k of Xi and Xj: 

( ) ( ) ( ) ( ), ,i j i j i jr X X s X X s X s X⎡ ⎤= ⎣ ⎦  

r(yi, yj) estimated correlation coefficient associated with output estimates yi and yj when two or more 
measurands or output quantities are determined in the same measurement 

2
ps  combined or pooled estimate of variance 

sp pooled experimental standard deviation, equal to the positive square root of 2
ps  

experimental variance of the mean q  

estimate of the variance σ 2/n of q : 

( ) ( )2 2
ks q s q n=  

2( )s q  

estimated variance obtained from a Type A evaluation 

experimental standard deviation of the mean q , equal to the positive square root of 2( )s q  

biased estimator of ( )qσ  (see C.2.21, note) 

( )s q  

standard uncertainty obtained from a Type A evaluation 

experimental variance determined from n independent repeated observations qk of q s2(qk) 

estimate of the variance σ 2 of the probability distribution of q 

experimental standard deviation, equal to the positive square root of s2(qk) s(qk) 

biased estimator of the standard deviation σ  of the probability distribution of q 

experimental variance of input mean iX , determined from n independent repeated observations 
Xi, k of Xi 

2( )is X  

estimated variance obtained from a Type A evaluation 

experimental standard deviation of input mean iX , equal to the positive square root of 2( )is X  ( )is X  

standard uncertainty obtained from a Type A evaluation 

estimate of the covariance of means q  and r  that estimate the expectations µq and µr of two 
randomly-varying quantities q and r, determined from n independent pairs of repeated 
simultaneous observations qk and rk of q and r 

( , )s q r  

estimated covariance obtained from a Type A evaluation 

estimate of the covariance of input means iX  and jX , determined from n independent pairs of 
repeated simultaneous observations Xi, k and Xj, k of Xi and Xj 

( , )i js X X  

estimated covariance obtained from a Type A evaluation 
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tp(v) t-factor from the t-distribution for v degrees of freedom corresponding to a given probability p 

tp(veff) t-factor from the t-distribution for veff degrees of freedom corresponding to a given probability p, 
used to calculate expanded uncertainty Up 

u2(xi) estimated variance associated with input estimate xi that estimates input quantity Xi 

NOTE When xi is determined from the arithmetic mean or average of n independent repeated 
observations, 2 2( ) ( )i iu x s X=  is an estimated variance obtained from a Type A evaluation. 

u(xi) standard uncertainty of input estimate xi that estimates input quantity Xi, equal to the positive 
square root of u2(xi) 

NOTE When xi is determined from the arithmetic mean or average of n independent repeated 
observations, ( ) ( )i iu x s X=  is a standard uncertainty obtained from a Type A evaluation. 

u(xi, xj) estimated covariance associated with two input estimates xi and xj that estimate input quantities 
Xi and Xj 

NOTE When xi and xj are determined from n independent pairs of repeated simultaneous observations, 
( , ) ( , )i j i ju x x s X X=  is an estimated covariance obtained from a Type A evaluation. 

2
c ( )u y  combined variance associated with output estimate y 

uc(y) combined standard uncertainty of output estimate y, equal to the positive square root of 2
c ( )u y  

ucA(y) combined standard uncertainty of output estimate y determined from standard uncertainties and 
estimated covariances obtained from Type A evaluations alone 

ucB(y) combined standard uncertainty of output estimate y determined from standard uncertainties and 
estimated covariances obtained from Type B evaluations alone 

uc(yi) combined standard uncertainty of output estimate yi when two or more measurands or output 
quantities are determined in the same measurement 

2 ( )iu y  component of combined variance 2
c ( )u y  associated with output estimate y generated by 

estimated variance u2(xi) associated with input estimate xi: 

( ) ( ) 22
i i iu y c u x⎡ ⎤≡ ⎣ ⎦  

ui(y) component of combined standard uncertainty uc(y) of output estimate y generated by the 
standard uncertainty of input estimate xi: 

( ) ( )i i iu y c u x≡  

u(yi, yj) estimated covariance associated with output estimates yi and yj determined in the same 
measurement 

u(xi) / |xi| relative standard uncertainty of input estimate xi 

uc(y) / |y| relative combined standard uncertainty of output estimate y 

[u(xi)/xi]2 estimated relative variance associated with input estimate xi 

[uc(y)/y]2 relative combined variance associated with output estimate y 

( ),i j

i j

u x x

x x
 

estimated relative covariance associated with input estimates xi and xj 
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U expanded uncertainty of output estimate y that defines an interval Y = y ± U having a high level 
of confidence, equal to coverage factor k times the combined standard uncertainty uc(y) of y: 

( )cU k u y=  

Up expanded uncertainty of output estimate y that defines an interval Y = y ± Up having a high, 
specified level of confidence p, equal to coverage factor kp times the combined standard 
uncertainty uc(y) of y: 

( )cp pU k u y=  

xi estimate of input quantity Xi 

NOTE When xi is determined from the arithmetic mean or average of n independent repeated 
observations, .i ix X=  

Xi i th input quantity on which measurand Y depends 

NOTE Xi may be the physical quantity or the random variable (see 4.1.1, Note 1). 

iX  estimate of the value of input quantity Xi, equal to the arithmetic mean or average of n
independent repeated observations Xi, k of Xi 

Xi, k k th independent repeated observation of Xi 

estimate of measurand Y 

result of a measurement 

y 

output estimate 

yi estimate of measurand Yi when two or more measurands are determined in the same 
measurement 

Y a measurand 

( )
( )

i

i

u x
u x

∆  
estimated relative uncertainty of standard uncertainty u(xi) of input estimate xi 

µq expectation or mean of the probability distribution of randomly-varying quantity q 

v degrees of freedom (general) 

vi degrees of freedom, or effective degrees of freedom, of standard uncertainty u(xi) of input 
estimate xi 

veff effective degrees of freedom of uc(y), used to obtain tp(veff) for calculating expanded uncertainty 
Up 

veffA effective degrees of freedom of a combined standard uncertainty determined from standard 
uncertainties obtained from Type A evaluations alone 

veffB effective degrees of freedom of a combined standard uncertainty determined from standard 
uncertainties obtained from Type B evaluations alone 

σ2 variance of a probabiIity distribution of (for example) a randomly-varying quantity q, estimated 
by s2(qk) 

standard deviation of a probability distribution, equal to the positive square root of σ 2 σ 

s(qk) is a biased estimator of σ  
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2( )qσ  variance of q , equal to σ2/n, estimated by 2 2( ) ( )ks q s q n=  

standard deviation of q , equal to the positive square root of 2( )qσ  ( )qσ  

( )s q  is a biased estimator of ( )qσ  
2[ ( )]s qσ  variance of experimental standard deviation ( )s q  of q  

[ ( )]s qσ  standard deviation of experimental standard deviation ( )s q  of q , equal to the positive square 
root of 2[ ( )]s qσ  
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distribution, Laplace-Gauss      

see Laplace-Gauss distribution 
distribution, normal     see normal 

distribution 
distribution, probability      

see probability distribution 
distribution, rectangular     4.3.7,  

4.3.9,  4.4.5,  F.2.2.1,  F.2.2.2,  
F.2.2.3,  F.2.3.3,  G.2.2 Note 1,  
G.4.3 

distributions, convolving 
probability     see probability 
distributions, convolving 

distributions, mathematically 
determinate     F.2.2 

distribution, Student's      
see Student's distribution 
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distribution, t-     see t-distribution 
distribution, trapezoidal     4.3.9 
distribution, triangular     4.3.9,  

4.4.6,  F.2.3.3 

E 

effect, random     see random effect 
effect, systematic     see systematic 

effect 
error analysis     0.2 
error and uncertainty, confusion 

between     3.2.2 Note 2,  
3.2.3 Note,  E.5.4 

error bound, maximum     E.4.1 
error curve of a verified instrument  

F.2.4.2 
error, determining     3.4.5 
error, maximum permissible      

F.2.4.2 
error of measurement     0.2,  2.2.4,  

3.2,  3.2.1 Note,  3.2.2 Note 2,  
3.2.3 Note,  3.3.1 Note,  3.3.2,  
B.2.19,  D,  D.4,  D.6.1,  D.6.2,  
E.5.1 et seqq. 

error propagation, general law of      
5.2.2 Note 1,  E.3.2 

error, random     see random error 
error, relative     see relative error 
error, systematic     see systematic 

error 
estimate     3.1.2,  C.2.26 
estimate, input     see input 

estimate 
estimate, output     see output 

estimate 
estimation     C.2.24 
estimator     4.2.7,  C.2.25 
expanded uncertainty     2.3.5,  

3.3.7,  6,  6.2.1,  6.2.2,  6.2.3,  G.1.1,  
G.2.3,  G.3.2,  G.4.1,  G.5.1,  G.5.2,  
G.5.3,  G.5.4,  G.6.4,  G.6.5,  G.6.6 

expanded uncertainty for an 
asymmetric distribution     G.5.3 

expanded uncertainty, relative      
7.2.3 

expanded uncertainty, reporting      
7.2.3,  7.2.4 

expectation (or expected value)      
3.2.2,  3.2.3,  4.1.1 Note 3,  4.2.1,  
4.3.7,  4.3.8,  4.3.9,  C.2.9,  C.3.1,  
C.3.2 

experimental standard 
deviation     see standard 
deviation, experimental 

F 

F-distribution     H.5.2.3 
frequency     C.2.17 
frequency distribution     3.3.5,  

4.1.6,  C.2.18,  E.3.5 
frequency, relative     E.3.5 

F-test     H.5.2.2,  H.5.2.4 
functional relationship     4.1.1,  

4.1.2 
functional relationship, 

linearization of a     5.1.5,  
F.2.4.4 Note,  5.1.6 Note 1 

functional relationship, 
nonlinear     4.1.4 Note,  5.1.2 Note,  
F.2.4.4 Note,  G.1.5,  H.1.7,  H.2.4 

H 

higher-order terms     5.1.2 Note,  
E.3.1,  H.1.7 

histogram     4.4.3,  D.6.1 Note 1 

I 

IEC     Preliminary,  Foreword,  A.3,  
B.1 

IFCC     Preliminary,  Foreword,  B.1 
imported input value or quantity      

F.2.3,  F.2.3.1 
independence     5.1,  C.3.7 
independent repetitions     F.1.1.2 
influence quantities, random      

F.1.1.3,  F.1.1.4 
influence quantity     3.1.5,  3.1.6,  

3.2.3,  4.2.2,  B.2.10 
information, pool of, for a Type B 

evaluation     3.3.5 Note,  4.3.1,  
4.3.2,  5.2.5 

input estimate     4.1.4,  4.1.6,  4.2.1 
input estimates or quantities, 

correlated     see correlation 
input quantities, categorization of    

4.1.3 
input quantity     4.1.2 
input quantity, bounds on an      

see bounds on an input quantity 
input value or quantity, imported      

see imported input value or 
quantity 

International Electrotechnical 
Commission     see IEC 

International Federation of Clinical 
Chemistry     see IFCC 

International Organization of Legal 
Metrology     see OIML 

International Organization for 
Standardization     see ISO 

International System of Units (SI)     
0.3,  3.4.6 

International Union of Pure and 
Applied Chemistry     see IUPAC 

International Union of Pure and 
Applied Physics     see IUPAP 

International vocabulary of basic 
and general terms in metrology     
see VIM 

ISO     Preliminary,  Foreword,  A.3,  
B.1 

ISO/TAG 4     Foreword 

ISO/TAG 4/WG 3     Foreword 
ISO/TAG 4/WG 3, terms of 

reference of     Foreword 
ISO Technical Advisory Group on 

Metrology (ISO/TAG 4)      
Foreword 

ISO 3534-1     2.1,  C.1 
IUPAC     Preliminary,  Foreword,  

B.1 
IUPAP     Preliminary,  Foreword,  

B.1 

L 

laboratories, national metrology or 
standards     Foreword 

Laplace-Gauss distribution      
C.2.14 

least squares, method of     4.2.5,  
G.3.3,  H.3,  H.3.1,  H.3.2 

legal metrology     3.4.5 
level of confidence     0.4,  

2.2.3 Note 1,  2.3.5 Notes 1 and 2,  
3.3.7,  4.3.4,  6.2.2,  6.2.3,  6.3.1,  
6.3.2,  6.3.3,  G,  G.1.1,  G.1.2,  
G.1.3,  G.2.3,  G.3.2,  G.3.4,  G.4.1,  
G.6.1,  G.6.4,  G.6.6 

level of confidence, minimum      
F.2.3.2 

limit, safety     see safety limit 
limits, upper and lower, on an input 

quantity     see bounds on an 
input quantity 

M 

maximum bounds     see bounds on 
an input quantity 

maximum entropy, principle of      
4.3.8 Note 2 

mean     C.2.9,  C.3.1 
mean, arithmetic     see arithmetic 

mean 
measurable quantity     B.2.1 
measurand     1.2,  3.1.1,  3.1.3,  

B.2.19,  D.1,  D.1.1,  D.1.2,  D.3.4 
measurand, best possible 

measurement of the     D.3.4 
measurand, definition or 

specification of the      
see measurand 

measurand, many values of the      
D.6.2 

measurands, covariance of 
related     see correlated output 
estimates or quantities 

measurand, value of the     3.1.1,  
3.1.2,  3.1.3 

measurand, uncertainty due to 
incomplete definition of the      
see uncertainty due to incomplete 
definition of the measurand 

measurement     3.1,  3.1.1,  B.2.5 
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measurement, accuracy of      
see accuracy of measurement 

measurement hierarchy     7.1.1 
measurement, mathematical model 

of the     3.1.6,  3.4.1,  3.4.2,  4.1,  
4.1.1,  4.1.2 

measurement, method of      
see method of measurement 

measurement, principle of      
see principle of measurement 

measurement procedure     3.1.1,  
7.1.2,  B.2.8,  F.1.1.2 

measurement result and its 
uncertainty, availability of 
information describing a     7.1.1,  
7.1.3 

measurement result and its 
uncertainty, formats for reporting 
a     7.2.2,  7.2.4 

measurement result and its 
uncertainty, reporting in detail a    
7.1.4,  7.2.7 

measurement, result of a      
see result of a measurement 

measurement, role of ANOVA in      
H.5.3 et seqq. 

measurements, spectrum of, to 
which the principles of the Guide 
apply     1.1 

method of measurement     3.1.1,  
B.2.7 

method of measurement, 
uncertainty of the      
see uncertainty of the method of 
measurement 

method of measurement, unit 
dependent on the     H.6 

metrology, legal     see legal 
metrology 

minimum uncertainty      
see uncertainty, minimum 

model, mathematical, of the 
measurement      
see measurement, mathematical 
model of the 

N 

nonlinear functional 
relationship     see functional 
relationship, nonlinear 

normal distribution     4.2.3 Note 1,  
4.3.2 Note,  4.3.4,  4.3.5,  4.3.6,  
4.3.9 Note 1,  4.4.2,  4.4.6,  C.2.14,  
E.3.3,  F.2.3.3,  G.1.3,  G.1.4,  G.2.1,  
G.2.2,  G.2.3,  G.5.2 Note 2 

O 

observations, independent pairs of 
simultaneous     5.2.3,  C.3.4,  
F.1.2.2,  H.2.2,  H.2.4,  H.4.2 

observations, repeated     3.1.4,  
3.1.5,  3.1.6,  3.2.2,  3.3.5,  4.2.1,  
4.2.3,  4.3.1,  4.4.1,  4.4.3,  5.2.3,  
E.4.2,  E.4.3,  F.1,  F.1.1,  F.1.1.1,  
F.1.1.2,  G.3.2 

OIML     Preliminary,  Foreword,  
A.3,  B.1 

one-sided confidence interval      
C.2.28 

output estimate     4.1.4,  4.1.5,  
7.2.5 

output estimates or quantities, 
correlated     see correlated 
output estimates or quantities 

output quantity     4.1.2 
overall uncertainty      

see uncertainty, overall 

P 

parameter     C.2.7 
partial derivatives     5.1.3 
particular quantity     3.1.1,  

B.2.1 Note 1 
pooled estimate of variance      

see variance, pooled estimate of 
population     C.2.16 
precision     B.2.14 Note 2 
principle of measurement     B.2.6 
probability     3.3.5,  4.3.7,  4.3.8,  

4.3.9,  C.2.1,  E.3.5,  E.3.6,  F.2.2.3 
probability, coverage      

see coverage probability 
probability density function     3.3.5,  

4.3.8 Note 2,  4.4.2,  4.4.5,  4.4.6,  
C.2.5,  F.2.4.4 

probability distribution     3.3.4,  
4.1.1 Note 1,  4.1.6,  4.2.3 Note 1,  
4.4.1,  4.4.2,  4.4.3,  4.4.4,  C.2.3,  
E.4.2,  G.1.4,  G.1.5 

probability distributions, 
convolving     4.3.9 Note 2,  G.1.4,  
G.1.5,  G.1.6,  G.2.2,  G.6.5 

probability element     C.2.5 Note,  
F.2.4.4 

probability mass function     C.2.6 
probability, subjective     3.3.5,  

D.6.1 
propagation, general law of 

error     see error propagation, 
general law of 

propagation of uncertainty, law of    
see uncertainty, law of 
propagation of 

Q 

quantity, controlled     F.2.4.3 
quantity, influence     see influence 

quantity 
quantity, input     see input quantity 
quantity, measurable      

see measurable quantity 

quantity, output     see output 
quantity 

quantity, particular     see particular 
quantity 

quantity, realized     D.2,  D.2.1,  
D.3.1,  D.3.2,  D.3.3,  D.4 

quantity, value of a     see value of 
a quantity 

R 

random     3.3.3,  E.1.3,  E.3.5,  E.3.6,  
E.3.7 

random effect     3.2.2,  3.3.1,  3.3.3,  
4.2.2,  E.1.1,  E.3 

random error     3.2.1,  3.2.2,  3.2.3,  
B.2.21 

randomness     F.1.1,  F.1.1.3,  
F.1.1.4,  F.1.1.5 

random variable     4.1.1 Note 1,  
4.2.1,  4.2.3 Note 1,  C.2.2,  C.3.1,  
C.3.2,  C.3.4,  C.3.7,  C.3.8,  E.3.4,  
F.1.2.1,  G.3.2 

random variations, correlated      
see correlated random variations 

Recommendation INC-1 (1980)      
Preliminary,  Foreword,  0.5,  0.7,  
3.3.3,  6.1.1,  6.1.2,  6.3.3,  A.1,  A.3,  
E,  E.2.3,  E.3.7 

Recommendation 1 (CI-1981), CIPM 
Preliminary,  0.5,  6.1.1,  A.2,  A.3 

Recommendation 1 (CI-1986), CIPM 
0.5,  6.1.1,  6.1.2,  A.3 

reference materials, certification of  
H.5,  H.5.3.2 

relative error     B.2.20 
repeatability conditions     3.1.4,  

B.2.15 Note 1 
repeatability of results of 

measurements     B.2.15 
repeated observations      

see observations, repeated 
repetitions, independent      

see independent repetitions 
reproducibility of results of 

measurements     B.2.16 
result, corrected     see corrected 

result 
result of a measurement     1.3,  

3.1.2,  B.2.11 
result, uncorrected      

see uncorrected result 

S 

safety limit     6.3.1 Note 
sample, uncertainty of the      

see uncertainty of the sample 
sampling, uncertainty due to 

limited     see uncertainty due to 
limited sampling 

sensitivity coefficients     5.1.3,  
5.1.4 
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sensitivity coefficients, 
experimental determination of      
5.1.4 

standard deviation     3.3.5,  C.2.12,  
C.2.21,  C.3.3 

standard deviation, experimental      
4.2.2,  B.2.17 

standard deviation of the mean, 
experimental     4.2.3,  
B.2.17 Note 2 

standard deviation of the mean, 
uncertainty of the experimental     
see uncertainty of the 
experimental standard deviation 
of the mean 

standard deviation, pooled 
experimental     see variance, 
pooled estimate of 

standard deviations as measures of 
uncertainty     see uncertainty, 
standard deviations as measures 
of 

standard deviations, propagation 
of     E.3,  E.3.1,  E.3.2 

standard deviations, propagation of 
multiples of     E.3.3 

standard uncertainty     2.3.1,  3.3.5,  
3.3.6,  4.1.5,  4.1.6,  4.2.3,  D.6.1,  
E.4.1 

standard uncertainty, graphical 
illustration of evaluating      
4.4 et seqq. 

standard uncertainty, relative      
5.1.6 

standard uncertainty, Type A 
evaluation of     see Type A 
evaluation of uncertainty 

standard uncertainty, Type B 
evaluation of     see Type B 
evaluation of uncertainty 

statistic     4.2.7,  C.2.23 
statistical control     3.4.2,  4.2.4 
statistical coverage interval      

C.2.30 
Student's distribution     C.3.8,  G.3.2 
systematic     3.3.3,  E.1.3,  E.3.4,  

E.3.5,  E.3.6,  E.3.7 
systematic effect     3.2.3,  3.2.4,  

3.3.1,  3.3.2,  3.3.3,  D.6.1,  E.1.1,  
E.3,  E.4.4 

systematic error     3.2.1,  3.2.3,  
B.2.22 

T 

Taylor series     5.1.2,  E.3.1,  G.1.5,  
G.4.2,  H.1.7,  H.2.4 

t-distribution     4.2.3 Note 1,  C.3.8,  
G.3,  G.3.2,  G.3.4,  G.4.1,  G.4.2,  
G.5.4,  G.6.2 

t-distribution, quantiles of the      
G.3.4 Note 

t-factor     E.3.3,  G.3.2,  G.3.4,  G.4.1,  
G.5.4,  G.6.2,  G.6.4,  G.6.5,  G.6.6 

tolerance interval, statistical      
C.2.30 Note 2 

true value of a quantity     2.2.4,  
3.1.1 Note,  B.2.3,  D,  D.3,  D.3.1,  
D.3.4,  D.3.5,  E.5.1,  E.5.2,  E.5.3,  
E.5.4 

true value of a quantity, 
conventional     see conventional 
true value of a quantity 

two-side confidence interval      
C.2.27 

Type A combined standard 
uncertainty     7.2.1,  G.4.1 Note 3 

Type A evaluation of covariance      
5.2.3 

Type A evaluation of uncertainty      
2.3.2,  3.3.3,  3.3.4,  3.3.5,  4.1.6,  
4.2,  4.2.1,  4.2.2,  4.2.3,  4.2.4,  
4.2.5,  4.2.6,  4.2.7,  4.2.8,  4.3.2,  
4.4.1,  4.4.2,  4.4.3,  E.3.7,  F.1,  
F.1.1.1,  F.1.1.2,  F.1.1.3,  F.1.1.4 

Type A standard uncertainty      
3.3.5,  4.2.3,  C.3.3 

Type A variance     4.2.3 
Type B combined standard 

uncertainty     7.2.1,  G.4.1 Note 3 
Type B evaluation of covariance      

5.2.5 
Type B evaluation of uncertainty      

2.3.3,  3.3.3,  3.3.4,  3.3.5,  4.1.6,  
4.3,  4.3.1,  4.3.2,  4.3.3,  4.3.4,  
4.3.5,  4.3.6,  4.3.7,  4.3.8,  4.3.9,  
4.3.10,  4.3.11,  4.4.4,  4.4.5,  4.4.6,  
E.3.7,  F.2 et seqq. 

Type B evaluations, need for      
F.2.1 

Type B standard uncertainty      
3.3.5,  4.3.1,  C.3.3 

Type B variance     4.3.1 

U 

uncertainties, rounding of     7.2.6 
uncertainties, significant digits 

for     7.2.6 
uncertainty, categorizing or 

classifying components of      
3.3.3,  3.3.4,  E.3.6,  E.3.7 

uncertainty, comparison of two 
views of     E.5 et seqq. 

uncertainty, definition of the term     
see uncertainty of measurement 

uncertainty, double-counting 
components of     4.3.10 

uncertainty due to finite-precision 
arithmetic     F.2.2.3 

uncertainty due to hysteresis      
F.2.2.2 

uncertainty due to incomplete 
definition of the measurand      
3.1.3 Note,  D.1.1,  D.3.4,  D.6.2 

uncertainty due to limited 
sampling     4.3.2 Note,  E.4.3 

uncertainty due to resolution of a 
digital indication     F.2.2.1 

uncertainty evaluations, 
justification for realistic     E.2,  
E.2.1,  E.2.2,  E.2.3 

uncertainty, grouping components 
of     3.3.3 Note,  3.4.3,  E.3.7 

uncertainty, ideal method for 
evaluating and expressing     0.4 

uncertainty ignoring a component 
of     3.4.4 

uncertainty, internally consistent 
quantity for expressing     0.4 

uncertainty, intrinsic     D.3.4 
uncertainty, lack of an explicit 

report of     7.1.3 
uncertainty, law of propagation of    

3.3.6,  3.4.1,  5.1.2,  E.3,  E.3.1,  
E.3.2,  E.3.6,  G.6.6 

uncertainty, maximum allowed      
F.2.4.2 

uncertainty, minimum     D.3.4 
uncertainty of a controlled 

quantity     F.2.4.3 
uncertainty of a correction      

3.2.3 Note,  3.3.1,  3.3.3,  D.6.1,  
E.1.1,  E.3 

uncertainty of a single observation 
of a calibrated instrument      
F.2.4.1 

uncertainty of a single observation 
of a verified instrument     F.2.4.2 

uncertainty of measurement     0.1,  
0.2,  1.1,  2.2,  2.2.1,  2.2.2,  2.2.3,  
2.2.4,  3.3,  3.3.1,  3.3.2,  B.2.18,  D,  
D.5,  D.5.1,  D.5.2,  D.5.3,  D.6.1,  
D.6.2 

uncertainty of the experimental 
standard deviation of the mean      
4.3.2 Note,  E.4.3 

uncertainty of the method of 
measurement     F.2.5,  F.2.5.1 

uncertainty of the sample      
F.2.6 et seqq. 

uncertainty, overall     2.3.5 Note 3 
uncertainty, quality and utility of 

the quoted     3.4.8 
uncertainty, reporting     7 et seqq. 
uncertainty, safe     E.1.1,  E.1.2,  

E.2.1,  E.2.3,  E.4.1,  F.2.3.2 
uncertainty, sources of     3.3.2 
uncertainty, standard deviations as 

measures of     E.3.2,  E.4,  E.4.1,  
E.4.2,  E.4.3,  E.4.4 

uncertainty, statistical evaluation of, 
by varying input quantities      
3.4.1,  3.4.2,  4.2.8,  F.2.1,  H.5.3.3 

uncertainty, summary of procedure 
for evaluating and expressing     8 

uncertainty, transferable quantity 
for expressing     0.4 

uncertainty, universal method for 
evaluating and expressing     0.4 

uncertainty when a correction is 
not applied     3.4.4,  6.3.1 Note,  
F.2.4.5 

uncorrected result     B.2.12 
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unit, use of an adopted value of 
a measurement standard as a       
3.4.6,  4.2.8 Note 

V 

value of a quantity     3.1.1,  B.2.2 
variance     3.1.7,  4.2.2,  4.2.3,  

C.2.11,  C.2.20,  C.3.2 
variance, Allan     4.2.7 Note 
variance, analysis of     see ANOVA 
variance, combined     3.3.6,  5.1.2 
variance, experimental (or estimate 

of)     4.2.2,  H.3.6 Note 
variance of the mean     4.2.3,  C.3.2 
variance of the mean, experimental  

4.2.3,  C.3.2 
variance, pooled estimate of  

(or pooled experimental standard 
deviation)     4.2.4,  4.2.8 Note,  
H.1.3.2,  H.3.6 Note,  H.5.2.2,  
H.5.2.5,  H.6.3.1,  H.6.3.2 Note 

variance, relative     5.1.6 
variance, relative combined     5.1.6 
variate     C.2.2 
VIM     2.1,  2.2.3,  2.2.4,  B.1 

W 

Welch-Satterthwaite formula      
G.4.1,  G.4.2,  G.6.2,  G.6.4 

Working Group on the Statement of 
Uncertainties     Preliminary,  
Foreword,  0.5,  3.3.3,  6.1.1,  6.1.2,  
A.1,  A.2,  A.3 

Working Group 3 (ISO/TAG 4/WG 3) 
Foreword 

 





  

 

  

  

© JCGM 2008 – All rights reserved 
 

 


	G001-100-e08.pdf
	JCGM 100 - Evaluation of measurement data - Guide to the expression of uncertainty in measurement
	Copyright
	Contents
	Preliminary
	Foreword
	0  Introduction
	1  Scope
	2  Definitions
	2.1  General metrological terms
	2.2  The term “uncertainty”
	2.3  Terms specific to this Guide

	3  Basic concepts
	3.1  Measurement
	3.2  Errors, effects, and corrections
	3.3  Uncertainty
	3.4  Practical considerations

	4  Evaluating standard uncertainty
	4.1  Modelling the measurement
	4.2  Type A evaluation of standard uncertainty
	4.3  Type B evaluation of standard uncertainty
	4.4  Graphical illustration of evaluating standard uncertainty

	5  Determining combined standard uncertainty
	5.1  Uncorrelated input quantities
	5.2  Correlated input quantities

	6  Determining expanded uncertainty
	6.1  Introduction
	6.2  Expanded uncertainty
	6.3  Choosing a coverage factor

	7  Reporting uncertainty
	7.1  General guidance
	7.2  Specific guidance

	8  Summary of procedure for evaluating and expressing uncertain
	Annex A - Recommendations of Working Group and CIPM
	A.1  Recommendation INC-1 (1980)
	A.2  Recommendation 1 (CI-1981)
	A.3  Recommendation 1 (CI-1986)

	Annex B - General metrological terms
	B.1  Source of definitions
	B.2  Definitions

	Annex C - Basic statistical terms and concepts
	C.1  Source of definitions
	C.2  Definitions
	C.3  Elaboration of terms and concepts
	C.3.1  Expectation
	C.3.2  Variance
	C.3.3  Standard deviation
	C.3.4  Covariance
	C.3.5  Covariance matrix
	C.3.6  Correlation coefficient
	C.3.7  Independence
	C.3.8  The t-distribution; Student's distribution


	Annex D - "True" value, error, and uncertainty
	D.1  The measurand
	D.2  The realized quantity
	D.3  The "true" value and the corrected value
	D.4  Error
	D.5  Uncertainty
	D.6  Graphical representation

	Annex E - Motivation and basis for Recommendation INC-1 (1980)
	E.1  "Safe", "random", and "systematic"
	E.2  Justification for realistic uncertainty evaluations
	E.3  Justification for treating all uncertainty components identically
	E.4  Standard deviations as measures of uncertainy
	E.5  A comparison of two views of uncertainty

	Annex F - Practical guidance on evaluating uncertainty components
	F.1  Components evaluated from repeated observations: Type A
	F.1.1  Randomness and repeated observations
	F.1.2  Correlations

	F.2  Components evaluated from repeated observations: Type B
	F.2.1  The need for Type B evaluations
	F.2.2  Mathematically determinate distributions
	F.2.3  Imported input values
	F.2.4  Measured input values
	F.2.5  Uncertainty of the method of measurement
	F.2.6  Uncertainty of the sample


	Annex G - Degrees of freedom and levels of confidence
	G.1  Introduction
	G.2  Central Limit Theorem
	G.3  The t-distribution and degrees of freedom
	G.4  Effective degrees of freedom
	G.5  Other considerations
	G.6  Summary and conclusions

	Annex H - Examples
	H.1  End-gauge calibration
	H.1.1  The measurement problem
	H.1.2  Mathematical model
	H.1.3  Contributory variances
	H.1.4  Combined standard uncertainty
	H.1.5  Final result
	H.1.6  Expanded uncertainty
	H.1.7  Second-order terms

	H.2  Simultaneous resistance and reactance measurement
	H.2.1  The measurement problem
	H.2.2  Mathematical model and data
	H.2.3  Results: approach 1
	H.2.4  Results: approach 2

	H.3  Calibration of a thermometer
	H.3.1  The measurement problem
	H.3.2  Least-squares fitting
	H.3.3  Calculation of results
	H.3.4  Uncertainty of a predicted value
	H.3.5  Elimination of the correlation between the slope and intercept
	H.3.6  Other considerations

	H.4  Measurement of activity
	H.4.1  The measurement problem
	H.4.2  Analysis of data
	H.4.3  Calculation of final results

	H.5  Analysis of variance
	H.5.1  The measurement problem
	H.5.2  A numerical example
	H.5.3  The role of ANOVA in measurement

	H.6  Measurements on a reference scale: hardness
	H.6.1  The measurement problem
	H.6.2  Mathematical model
	H.6.3  Contributory variances
	H.6.4  The combined standard uncertainty
	H.6.5  Numerical example


	Annex J - Glossary of principal symbols
	Bibliography
	Alphabetical index




