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Extension to parallel manipulators



1. Kinematic chain and H-D notation for manipulators

end-effector

Fig.3.1: A scheme for the manipulator architecture of a robot with the arm, wrist, and end-effector.
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Fig.3.2: Planar examples of kinematic chains of manipulators: a) serial chain as open type; b) parallel chain as
closed type.
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Fig.3.4: Manipulator architectures for industrial robots.




A kinematic model of a manipulator can be named as functional when its scheme refers to kinematic
parameters only, but permits also to understand the motion capability of the manipulator architecture.

A kinematic functional model can be determined from the mechanical design of a robot through the following
step-by-step procedure:

- identification of the type of the joints;

- identification of the position of each joint axes;

- identification of the geometry of the links;

- drawing of a scheme for the kinematic chain.
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Fig.3.5: An example of modeling an industrial robot: a) the mechanical design; b) the corresponding kinematic
functional scheme.
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Fig.3.6: A kinematic scheme for manipulator link parameters according to the H-D notation.
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The kinematic parameters of a manipulator can be defined according to the H-D notation in Fig.3.6 as:
- &, which is named as the link length that is measured as the distance between the Z; and 7., axes along X;;

- aj, which is named as the twist angle that is measured as the angle between the Z; and Z;,; axes about X;;
- dj+1, whichisnamed asthe link offset that is measured as the distance between X; and X ;1 axes along Z1;

- Qj+1, Wwhich isnamed as the joint angle that is measured as the angle between the X; and X j,; axes about Zj j+1

When ajoint can be modeled as arotation pair, the angle ;.1 is the corresponding kinematic variable.
When ajoint can be modeled as a prismatic pair, the distance d;.; is the corresponding kinematic variable.



the pOSI tion pr oblem can be considered from different viewpoints depending of the unknowns:

Kinematic Direct Problem in which the dimensions of a manipulator are given through the
dimensional H-D parameters of the links but the position and orientation of the end-effector are determined
as afunction of the values of thejoint variables;

Kinematic Inverse problem in which the position and orientation of the end-effector of a given
manipulator are given, and the configuration of the manipulator chain is determined by computing the values
of the joint values.

Kinematic Indirect Problem (properly Design Problem) in which a certain number of positions
and orientations of the end-effector are given but the type of manipulator chain and its dimensions are the
unknowns of the problem.

Direct Kinematics

Design Problem DesignProblcml

joint i end-effector
variables location

T

Inverse Kinematics



Transformation matrix

X

Fig.3.7: Vectorsfor relative position and orientation between two reference frames.

X =h+ RXx X=TX

When the Transformation Matrix is defined as

R h 14 1x)] 1K
T = R=|j4d X X
O 1 Rotation Matrix: kX kxJ kxK




Xo=olN XN
and therefore a resultant transformation matrix for a manipulator can be obtained as
N-1
oTN Tol11T2 NaTN = kOO k Tk+1

This expression can be considered the fundamental typical formulation for the Direct Kinematic of manipulators.

Fig.3.8: A scheme for indicating which frames a transformation matrix is formulated with respect to.



In particular, by using the above-mentioned properties and formulation for the transformation matrix, a genera
expression for  Tx+1 can be given by referring to the general manipulator scheme of Fig.3.6, in the form

COSQi+1 - SINQk+1 0 Ay
SNQy4q COSa |, COSQy4q COSay, - Snay, - sna diyy
snqgqSna,  cosqqSha, cosa,  cosay diyq

0 0 0 1

as a composition of elementary matrices that describe elementary differences between reference frames that are
described by the H-D parameters.
An elementary matrix corresponds to arotation about areference axis or atranslation along such an axis.

k Tk+1 =
(3.1.15)

Thus the matrix Tx+1 can be given by the expression
k Tk+1 =Rot(Xy,ay) Trasl (X, ax ) Rot(Zy+1, 0k +1) Trasl(Zk+1,dk+1)  (3.1.19)

or alternatively by using elementary helicoidal motions, it is given by

k Tk =Screw(Xy,ay,ay ) Screw(Zy +1,dy +1, Ak +1) (3.1.20)



Definition and Generation of wor kspace

- The workspace W(H) is defined as the region of points that can be reached by a
reference point H on the manipulator extremity. Thisis the Position Workspace.

The workspace is defined as generated by a reference point H on the extremity of the manipulator chain that is
moved to reach all possible positions because of mobility ranges of the joints.

Smilarly, the Orientation Workspace can be defined as the set of orientations that can
be reached by the manipulator extremity.

Fundamental characteristics of the manipulator position workspace are recognized as:

- the shape and volume of the workspace, which is a solid of revolution for manipulators with only revolute
joints, and can be a parallelepiped for manipulators with prismatic joints;

- the hole, whose existence is determined by a region of unreachable points that can individuate straight-lines
surrounded by the workspace yet;

- thevoids, which are regions of unreachable points that are buried within the workspace yet.

Similar characteristics can be identified for the orientation workspace that nevertheless has a different topol ogy.



Z, |z the enveloping torus
of a parallel circle

dy=di+d)|

-u, -

Fig.2 Design parameters and workspace geometry for 3R manipulators.

()= U (H)

W (H)= T H

Revolving atorus about an axis generates aring: 3R J!O RaRs (3.1.27)
1

Alternatively, aring Wsgr(H) can be considered as the union of thetori Triro(H),

2p
Wag (H)= U TRR, (H)
3,0 . (3.1.28)



W or kspace gener ation
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Fig.3.11: A descriptive view of workspace generation for serial manipulators with revolute joints.



The generation process of a hyper-ring

IS a consecutive revolving process of acircle, atorus, aring, a4R hyper-ring, and so on.
This can be expressed through a revolution operator Rev in the form

2p
WiN- j+)R (H)= IJ?e_(\)/W(N- j)R(H)

J j=1,...,N-1 (3.1.30)

Alternatively,

Wn-+2)r (H) can be considered as the union of a suitable torus family which is traced by the boundary points in
the revolving torus, ring, 4R hyper-ring and so on, when they are rotated completely about the first two revolute
axes in the corresponding generating sub-chain. It can be expressed in the form

Wt o) = U Tre. W pr(H)
(N+1- PR _Jj,Jj+1=0 RiRj LITHN- )R (3.1.31)

where Tgrirj+1 (H), represents atorus generated by revolutions g; and g;+1 about the joints axes of R; and Rj;1. The
revolution in q;.1 generates a parallel circle in Wy;jr (H) and together with g; generates the torus Tgirj+1 (H).



the boundary TWsr(H) of aring
can be thought as the envelope of torus surfaces generated by revolution of the generating torus or, alternatively,

it can be obtained by an envelope of torus surfaces that are traced from the parallel circles of the generating torus.
The latter procedure can be expressed according to Eq.(3.1.28) in the form

MWag (H) = envirRr, (H)

J,=0 (3.1.29)

where "env" is an envelope operator performing an envelope process.

Hence, the boundary W+ (H) of a(N-j+1)R hyper-ring

can be described as an envelope of the torus family traced by all the points on W)= (H), and it can be
expressed as

2p
Wn- s)r(H)= env TR,-RJ-+1[T[\N(N- j)R(H)] . (3.1.32)

i =

Thus, a workspace boundary W\r(H) of a general N-R manipulator can be generated by using recursively
Eq.(3.1.32), to determine the tori envelopes from the ring up to the N-R hyper-ring in the chain, by computing
from the extremity to the base of the manipulator chain .



Telescopic manipulatorswith prismatic joints

workspace volume W(H) of Cylindroid Ring
can be thought as the union of the points swept by revolving cone Trop(H), due to the mobility in R, and P joints,
during the q, revolution about Z; axis.

2p
W(H)= U Trp(H)
J,=0 . (3.1.33)
Alter natively, aCylindroid Ring Wrre(H) can be considered as the union of the tori Triro(H), which are due to

the mobility in R, and R, joints and are traced by all parallel circles which can be cut on the generating
cylindrical cone Trop(H) so that Wrrp(H) can be expressed in the form

dmax
Wrrp(H)= UTrpg, (H)
d=d . : (3.1.34)

Consequently, the workspace boundary {fWgrrp(H) of a Cylindroid Ring can be obtained as the envelope of
toroidal surfaces Trire(H) as

d

TWgrgp(H) = d:d::nTRle (H) (3.1.35)
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Fig.3.12: Design parameters and topology in the generation of so-called Cylindroid Ring workspace for



tel escopic manipulator arms.
A hole is aregion, outside the ring but surrounded by the ring yet, within which it is possible to individuate at
least a straight line of points not belonging to the ring.

Therefore, a holeis generated, when therevolving torus does not intersect or touch the revolution axis.

A void can be generally identified as an internal region, within the workspace itself, which is not reachable by
point H.

a so-called ring void is a void with ring topology, which is generated by a hole in a generating torus that does
not intersect the revolution axis.

A so-called apple void is obtained when the hole of the generating torus intersects the axis of revolution for
ring generation and a bulk apple shaped volume characterizesiit.

Particularly, referring to the case of position workspace of manipulators with revolute joins, two branches of
envelope boundary contours in a cross-section of a workspace boundary are observable: an external one and an
internal one, as shown in the example of Fig.3.13 for 4R manipulators.
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Fig.3.13: Workspace cross-section of a 4R manipulator withal= 3u, a2= 4u, a3= 2u, a4= 5u, al= a2= a3=
60 deg, d2= d3= d4= 1 u. (uistheunit length)
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Figure 3. Manifolds for ring void of three-revolute manipulator.



Numerical proceduresfor workspace deter mination

A binary matrix formulation
An algebraic formulation

binary matrix formulation - a numerical algorithm whose basic steps are:

1. Dividing the cross-section planer, z into | x Jsmall rectangles of width Di and of height Dj, where Jand | are
the number of divisions along the r axis and z axis, respectively.
Each rectangle isindividuated by Pj; to provide a binary image of the wor kspace cr oss-section.

the width Di and of the height Dj can be properly selected as a function of the Dgy scanning intervals.
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Fig.3.14: A grid of scanning process for binary mapping of workspace cross-section.




2. Initialization by setting P;=0 for all i and j.
3. A scanning process for each joint angle gx from Qkmin UP tO Qmax With step Dqgx to compute workspace point
coordinates by using a matrix approach in the form

éxu éxu
gyU gy‘,J
U =T u
(] Kk k+f|.ézl:I
é U é (3.1.37)
&la &lg
K k+1

4. Construction of the binary map P;;= 1 of the workspace cross-section by determining i and j as

erg u €z, U
| =fiXa— j =fixa—y
eDi H a0 (3.1.38)

by using the operator fix to compute the integer value of the above-mentioned ratios.



Therefore, the binary mapping for the workspace cross-section is given by

L10if By T W(H)

Pi=i. ¢ ox
IT1iE Ry T W(H) (3139
12,
j#1
3 [Py
-1
4]
si rk>
1-1< i+l

deter mining wor kspace boundary can be developed by using Pj; yet.
i+1j+1
uUM=3 g R £9
i-1j-1 (3.1.40)
whose detection can be used to generate a binary mapping G;; = 1 for the boundary points.



a frequency matrix with entries fq;; can be generated during the generation of P; itself by giving to fg; the

values of the number of timesthat P;; has been reached
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Fig.3.15: Results of the binary matrix formulation for workspace evaluation of a robot manipulator COMAU

300 mm, a; = 90deg., a, = 1,100 mm, a, = az = 0deg., az = 1,625 mm, and b, = b,

SMART 6.100A with a3

8; b) cross-section area of secondary

wor kspace with fq(i,j) < 4; c¢) a map for the frequency matrix fq(,)).

bs = 0: a) cross-section workspace contour generated with sum



An algebraic formulation
The boundary of an (N-j+1)R hyper-ring can be expressed algebraically when it is thought generated by
enveloping the torus family traced by the parallel circlesin the boundary of the revolving (N-j)R hyper-ring,
according to Eq.(3.1.32).

J,=0 (3.1.29)

An equation for a torus family can be expressed with respect to the j-th link frame, assuming C;* 0 and
cosa ;! 0, asafunction of the radial r; and axial zj reaches, in the form

(r'2+Zj2-Aj)2+(Cij +Dj)2+Bj =0

J (3.1.41)

where the SO-called torus parametersarea, a j, r j+1, Zj+1, and the coefficients are given as

— A2 2 2
Aj=aj +rji +(Zjig +dj) Bj =-4a?r?, (3.1.42)

CJ:2ajlsaJ Dj:-Zaj(zj+1+dj+l)caj/saj

Particular cases with C; =0 or cosa; = O are not represented by Eq(3.1.41) and specific formulation can be
devel oped when the torus boundary is not generated as an envelope of the revolving circle.



The envelope equations of a torus family can be obtained from Eq.(3.1.41) and its derivative with respect to
the torus family parameter q .

After some algebrafor whichC;* Oand E;* O are needed,
the so-called ring boundary equations can be obtained in the form

2(Cz+D +Fu

- La
J '
g
-FG;*Q}* D;
Z.
"otk
where the so-called ring coefficients are given as
Ej :Rj+1+Sj+1 Fj =-2aj2 Rj+1

(3.1.44)
=23 7. . . _ 2|2 2 A28
GJ 2aJ ZJJrlcaJ/SaJ Qj=-E: Fj+Bj§Ej+Gjﬂ

with



' ' ' ' 2
R j+1:|_(Cj+1Zj+l +*Dj41)(Ej41G a1 - GjuaEjaa) + FuaBjar -FaEBjag JET

. 2 '
+ Gj+1Ej+1(Cj+1Zj+1 +Gj+1)/Ej+1 + Ej+1 - 22j+1zj+1 ,
Sj+1 = (Zj+1+dj+1)zj+1 (3.1.45)

o ' -1/2 ' ) 2 2
21 = [[£05QuQjH? - FluGjua- CjuaFiuJEd + 6%y)

/(E2 +G? )ZC- Gjs /C
j#1- Gjr [ Cjn

—Al2 ' '
+2(Fj+1Gj+1+Qj+1)(Ej+1Ej+1+Gj+1Gj+1) j+1 7 G

The symbol ' represents the derivative operator with respect to the torus family parameter qy .

] _ 1 1 ' _ 2 ' , "
EJ - Rj+]_ +Sj+1 F] = 'Zaj Rj+l Gj = -2aj Zj+1 Cajlsaj (3146)

. 5 Ty . . .
Qj =- 2Ej Fngj +Ej +Gj %+BJ-(EJ-Ej +G;G;)|*+2Q;E;/E;



Thisiterative computation can be expressed, according to Egs.(3.1.46), in ageneral iterative form

k _pk k
Ej+1 - Rj+2 +Sj+2 G;(+]_ =-28j4 Z;(:% Ca j41/5a j41
k _ 2 k
Fjaa = -285:aR i K=0,1,...j;j =01,..N-4 (3.1.47)

and, according to Egs.( 3.1.45), as

kK  _¢k|ek+l =k+l ~k+l k+l _ ,k [zk+l £k+1 ~k+l
Rj+2 =1 (Ej+2’Fj+2 ’Gj+2) Zj:2 =h (Ej++2’Fj++2 ’Gj++2)
k _— qklgk+l £k+l ~k+l
Siv2 =9 (Ej+2’Fj+2’Gj+2) k=0,1,...j;j=0,1,..., N-4 (3.1.48)

the ring coefficients can be algebraically expressed from the ring equations as

En- 2 =-2ay(dy- 1S3 N-1C0N taN-1SAN)

F-2 = 4a%. 28y (ay 5°@ . 1SONCON +ay. 1Sy - NS N. 108 - 1CTN)

GN- 2 =2aN. pap Ca . 2SA N- 1CON/SAN- 2 (3.1.49)
where from the geometry of the manipulator chain it holds

/2
_ 2 2
rN-1 =[(@ncan tan-1)” +(aysancay-1 +dysan-1) ]1

ZN-1=dycan.1-an AN SaN-1 (3.1.50)



- This can be obtained by scanning the joint angle gy from O to 2p and calculating at each j the
CoefficientSAj, Bj, Cj, Dj, Ej, Fj, Gj, Rj, S and Z'j, and flnaIIy I ,Zj when thej derivatives of Ej, Fj,
G;, are evaluated by using previous calculations for Rj.1, Sj+1 and Z' ..
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examples of ring wofkspace of 3R manipulators
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Fig.3.16. Workspace cross-sections of a 6R manipulator witha=iu(i=1,..,6),d; =0u,di=(-1) u (i =2,...,5),
anda;=p/4 (i=1,..,5). (uistheunit length): a) the envel ope boundary in the generating workspaces; b) the
cross-section of primary workspace.




A similar algebraic formulation can be deduced for the workspace of manipulators with prismatic
joints.
Figure 3.12 shows that the workspace boundary of Cylindroid Ring is composed of two different geometrical
topologies: envel ope segments and toroidal surfaces.
The envelope segments are located in the lateral sides of the cross-section representation, and two toroidal
surfaces are the top and bottom covers, respectively.
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Figure 3.17: Cross-section of a workspace boundary computed astori envel ope segments (circle points) and
toroidal covers (dotted points) for a telescopic manipulator armwitha; = 3u,a,=2u,h;=0u, h, = 2u,a;=
30 deg, a, = 30deg., dyin = - 5 U, dmax = 5 u, (uisaunit length).



Toruscovers

(2+22-Af +(cz+DP+B=0 (3.1.51)

The so-called structural coefficients are expressed as

A:a%+r22+(22+h2)2 B:—4afr22
_ 1 _ COsaq
C=2 D=-2 +h
sna; a (2, Z)Sinal (3.1.52)
rp = Ja§+d29”232 Z, =dcosa, (3.1.53)

where the independent variable is the stroke parameter d.



The envelope segments

the workspace boundary fW(H) of a Cylindroid Ring can be obtained as the envelope of toroidal surfaces Triro
(H), which are generated by revolution of the parallel circles of the generating cylindrical cone, and straight-line
segments of the envel ope contour.

\1

__-B D+Ay- .B'2+I‘3(A'2+D'2) D

w2 +D?)c cC
(3.1.57)

r:\/Bl-l-(C;'-l_ ID)ID"":A\-Z2

A':2(d+h2 cosaz) B':-4afdsin2a2 (3.1.56)
cosaj

snaj

D'=-2a; cosas



Fig.2. Cross-section of a Cylindroid Ring workspace volume computed as an union of generating tori for a
telescopic RRP manipulator withag =3u,a@2=2u,d1 =0u,d2=1u, a1 =30deg, a2 =30deg., dnin=1
U, dmax = 6 u, (uisaunit length).



Tablel- Effect of twist angles a1 and a2 on the cross-section shape of workspace for telescopic RRP
manipulatorswithag =1u, @ =2u,d1=0u,d=1u, dmin=-5U, dmax =5 U, (uisaunit length).

(seeFig.5).
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