
Table 2 - Effect of the link parameters a1 and a2 on the cross-section shape of workspace for telescopic RRP

manipulators with d1 = 0 u, d2 = 1 u,  α1 = 30 deg, α2 = 30 deg., dmin = - 5 u, dmax = 5 u, ( u is a unit
length). (see Fig.6).



Table 3 - Effect of the stroke values dmin and dmax on the cross-section shape of workspace for telescopic RRP

manipulators with a1 = 1 u, a2 = 2 u, d1 = 0 u, d2 = 1 u, α1 = 30 deg, α2 = 30 deg., ( u is a unit length).
(see Fig.7).



A workspace evaluation

by means of numerical simulations and/or experimental tests.

The fundamental characteristics of manipulator workspace for a numerical evaluation can be identified for both
position and orientation capabilities as:
- shape and value of cross-section areas;
- shape and value of workspace volume;
- shape and extension of hole and voids;
- reach distances and  reach ranges.

the repeatability measure through frequency matrix plots.

Once the workspace points (both in position and orientation) are determined,
one can use them to perform an evaluation of the above-mentioned workspace characteristics.

by using a grid evaluation or an algebraic formula.
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By using the boundary contour points through the Pappus-Guldinus
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Fig.3.18: A scheme for the computation of workspace volume of serial open-chain manipulators with revolute
joints.

( )( )∑ −+= ++
N

1 = j
1j,1j,1j,11 j,1 r rz z A

 (3.1.59)

( )( )∑ −+
π

= ++
N

1 = j

2
1j,1

2
j,1j,11 j,1 r rz z

2
 V

 (3.1.62)

• Similarly, hole and void regions can be numerically evaluated by using Eqs. (3.1.58) to  (3.1.62)
• Orientation workspace can be evaluated similarly by considering the angles in a Cartesian frame

representation.



Fig.5. Effect of twist angles α1 and α2 on the cross-section area and the volume of workspace for telescopic
RRP manipulators with a1 = 1 u, a2 = 2 u, d1 = 0 u, d2 = 1 u, dmin = - 5 u, dmax = 5 u, ( u is a unit length).
(see Table 1).



Manipulator design with prescribed workspace

• a general design problem can be formulated as finding the dimensions of a manipulator whose workspace
cross-section is within or is delimited by the given axial and radial reaches rmin, rmax, zmin, zmax.

Fig.3.19: A general scheme for prescribing workspace limits of a manipulator.



In order to outline a design procedure, the case of a 3R manipulator is discussed in detail.

Fig.3.20: The kinematic chain of a general 3R manipulator and its design parameters.

A general open-chain 3R manipulator with three revolute joints is sketched in Fig.3.20, in which the design

parameters are represented as the H-D parameters a1, a2, a3, d2, d3, αα1, αα2, and θθ 3 is the Z3 joint variable.
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with so-called structural coefficients as
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• Thus, the workspace boundary of a general three-revolute open-chain manipulator can be evaluated by
scanning the angle θ3 and plotting r1, z1.



Inversion of the formulation for workspace boundary

Fig.3.21: Design parameters for a general n-R manipulator.

Assuming as additional design parameters the position and orientation vectors s and k of the manipulator base
with respect to the fixed world frame XYZ, Fig.3.20, the workspace design equations (3.1.63) can be modified to
include the reference change. To accomplish this we take x as the position vector of a boundary point with
respect to XYZ, and we use the expression
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Introducing Eq.(3.1.67) into Eqs.(3.1.63), the result can be expressed, after some algebraic manipulations, in a
vector form as
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where r3 is the third row vector of R; the Z1 component of s1 can be computed as s1z = R k1 . Rt s1 = r3 . s ; and
k1 is the orientation vector of robot base as measured in X1Y1Z1.

the design unknowns are represented by
• the link sizes,
• the structural coefficients A1, B1, C1, D1, E1, F1, G1,
• and the manipulator base location vectors s, k.



• through the Newton-Raphson technique from a set of equations which express the workspace boundary points.
two decoupled set of design equations.

- Case: known robot base
to solve A1, E1, F1, G1, and B1
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the remaining structural unknowns C1 and D1 can be evaluated by means of  1
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- Case: unknown robot base
to solve the unknown A1, E1, F1, G1, Q1 and s
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the remaining four boundary points to give C1, D1 and r3
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Since we are interested in k, r3 together with the orthonormal unit vector constraints can be used to evaluate the
R matrix, whose third column represents k unit vector with respect to XYZ.



Once the structural coefficients are numerically determined, assuming w = sin2α1,

their expressions Eqs.(3.1.64) can be inverted to give
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and only the parameter w needs to be solved.
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Substituting Eqs.(3.1.73) into the first of Eqs.(3.1.64), with the position w = y + (1 + 4 A1 / C1
2) / 3, it yields

0q2yp3y3 =++ (3.1.74)

where
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Depending on the discriminant term  D = q2 + p3 (3.1.76)

Equation (3.1.74) can be solved algebraically using Cardano's formula as function of the discriminant D:

- when D > 0 , one real solution is expressed as  y = [ q + D1/2 ]1/3 +  [ q - D1/2 ]1/3 (3.1.77)

- when D = 0  two real solutions are expressed as  y1 = 2 q1/3 , y2 = - q1/3 ; (3.1.78)

- when D < 0  three real solutions are expressed as

y1 = 2 p1/2 cos(u/3), y2 = 2 p1/2 cos(u/3 + 2 π/3), y3 = 2 p1/2 cos(u/3 + 4π/3), (3.1.79)

where   u = cos-1(q/p3/2) (3.1.80)



Looking at the formulae (3.1.77)  to (3.1.79) it is observable that Eq.(3.1.74) gives
one or two solutions of w according to the condition 0 < w < 1

since at least one of the Eqs.(3.1.79) gives a negative value.

so that each solution for w corresponds to
• two manipulators distinguished at this step by the α1 sign
• two more manipulators taking into account the supplementary values of α1.

Successively, with the hypothesis that θ3 = 0, inverting Eqs.(3.1.65) and (3.1.66) the remaining chain parameters
can be obtained as
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from the expression of the two-link length d3
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(3.1.83) where  U = (G1 tanα1) /(2a1).

each solution for α2 corresponds to
• two manipulators distinguished
• two more manipulators taking into account the supplementary values .



each numerical solution for the structural coefficients and the manipulator base location corresponds

to sixty-four different manipulator parameter sets at the most,
depending on the number of solutions for α1 and α2.

However, meaningful solutions can be considered only the sixteen sets,

which can be synthesized for −π/2 < α1 < π/2 and −π/2 < α2 < π/2.

  



Optimum design formulation
An optimum design of manipulators can be formulated as an optimization problem in the form

min f (3.1.84)

subject to
xj ≥ Xj          (j = 1,...,J) (3.1.85)

V ≥ V0 (3.1.86)

where
• f is the objective function;
• Xj (j=1,...,J) represent given precision workspace points,
• V0 is a minimum value for a desirable workspace volume.

Fig.3.21: Design parameters for a general n-R manipulator.



objective function
Several workspace characteristics can be used to formulate the objective function

but however workspace volume and manipulator length are usually preferred.

the volume V of a manipulator workspace is related to the manipulator length L in a sense that larger is the
manipulator when larger is workspace volume is obtainable.

βL c = V (3.1.87)

where β is a constant  and c is a function of the chain parameters;
 the  manipulator length L can be defined as
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that depends of the link ratios and dimensions, respectively in the form
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where ki , i=1,...,2n+1, are the link ratios of ai and di , i=1,...,n, with respect to a1.



Consequently, the workspace volume can be computed by introducing Eq.(3.1.88) in the expression for a volume
of revolution to give
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the so-called manipulator global length Ltot, which can be defined in the form
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These characteristics can be also conveniently combined to formulate a performance index for manipulators.

like for example    3

*

L
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The general optimization formulation can be better illustrated by referring to a specific case

Thus, the optimum design of a general three-revolute manipulator deals with the synthesis of the parameters
a1, a2, a3,  d2, d3, α1, α2,  (d1 is not meaningful since it shifts up and down the workspace only),.
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subject to  

minz  (z)min ≥   maxz  (z)max ≤ minr  (r)min ≥ maxr  (r)max ≤  (3.1.93)




