
Table 1 - Flowchart of a numerical procedure for multi-body optimum design of 3R manipulators.



The Ring equations in 3.1.2.1 are useful to express analytically the constraint Eqs.(3.193) as explicit functions of
the design parameters. In addition, these equations are useful to calculate analytically the derivatives, which are
involved in the numerical optimization process.
for example the first derivatives with respect to the design parameter a1 can be expressed in the form
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Higher derivatives can be obtained by further differentiating the above expressions and using the algebraic
formulation in 3.1.3.2.



An example is illustrated in Fig.3.22.
the algorithm reaches a feasible solution with few iterations (12!) and it optimizes the workspace with a
manipulator length of 11.89 a 1 and a volume of 1000.34 a1

3.

Fig.3.22: An example of optimum design evolution for 3R manipulator with prescribed workspace.



a multi-objective optimization problem in the form

min f1 = - V
min f2 = L     (3)

subject to
g1 = zmin > z0,min
g2 = rmin > r0,min
g3 = rmax < r0,max     (4)
g4= zmax < z0,max

and
g5 = Area > Area0
g6 = a3 / a1 > K0     (5)

g7 = a3 – (a2 +d2 tan α2) < 0

a)      b) c)

Fig.4 Initial guess for the test of the optimum design of a 3R manipulator in the case: a) with hole and without
void; b) without hole and void; c) without hole and with void.



a)      b) c)

Fig.5 Results of the optimum design of 3R manipulator in term of obtained workspace cross-section (first row),
evolution of objective functions volume V (second row) and manipulator size L (third row) as a function of the

design prescribed in Fig.4 : a) with hole and without void; b) without hole and without void; c) without hole and
with void.



a)      b)    c)
Fig.6 Numerical evolution of the constraints in Eqs. (2) during the optimization process for the cases of Fig.5: a)

with hole and without void; b) without hole and void; c) without hole and with void.



Fig.7 Results of the evolution of the additional constraints in Eqs. (5) during the optimization process for the case of Fig.5: a) with hole and void; b)
without hole and void; c) without hole and with void.

a) b) c)
Fig.8 Results of the evolution of design parameters α1 and α2 during the optimization process for the case of Fig.5: a) with hole and without void; b)

without hole and void; c) without hole and with void.



a) b) c)
Fig.9 Results of the evolution of design parameters a1, a2, a3, d2, d3 during the optimization process for the case of Fig.5: a) with

hole and without void; b) without hole and void; c) without hole and with void.



a) b) c)
Fig.9 Results of the evolution of design parameters a1, a2, a3, d2, d3 during the optimization process for the case of Fig.5: a) with

hole and without void; b) without hole and void; c) without hole and with void.



Table 2 - Numerical results for the multi-objective functions for the design cases of Figs.4 and 5. (Dimension are expressed in u
unit length)

Objective Function V(u3) L(u) Iteration
number

Initial 555.750 19.000 -
Case a) 153.727 17.960 432
Case b) 161.749 14.484 554
Case c) 34.179 14.833 21

Table 3 - Numerical results for the constraints in Figs.6 and 7 (Dimensions are in u unit length)

Constraints g1 (u) g2 (u) g3 (u) g4 (u) g5 (u2) g6 (u) g7 (u)
Initial 3.466 0.999 0.622 -0.047 -11.379 -1.000 Not used

Case a) -2.440 0.017 0.007 0.037 0.491 0.000 Not used
Case b) -0.076 -0.002 -0.294 0.055 3.046 0.000 Not used
Case c) -0.304 0.348 -0.074 0.287 11.963 Not used -8.514

Table 4 - Numerical results for the design parameters in Figs.8 and 9 (Dimensions are in u unit length)

Design parameters a1 (u) a2 (u) a3 (u) d2 (u) d3 (u) α1 (deg) α2 (deg)
Initial 1.000 2.000 3.000 2.000 1.000 44.977 44.977

Case a) 0.957 0.800 1.913 1.847 3.055 6.073 66.1184
Case b) 0.971 1.193 1.943 2.613 1.232 21.371 80.041
Case c) 0.706 2.310 1.568 2.458 0.706 17.131 74.478



10. Extension to parallel manipulators
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Figure 16 A scheme for binary representation and evaluation of manipulator workspace.
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An example: CAPAMan (Cassino Parallel Manipulator)

  

Fig.3.41: Kinematic chain and design parameters of CaPaMan.  Fig.3.42: A built prototype at LARM in Cassino.



 



Fig. 3 The position workspace of the optimum designed CaPaMan architecture.



Fig. 4 The orientation workspace of the optimum designed CaPaMan



.

a)  b)

Fig.3 Workspace characteristics of CaPaMan prototype, Fig.1 and Table 1 with a scanning interval of 5 deg.:
a) position capability; b) workspace sections.



DESIGN PROBLEMS AND FORMULATION

• Several different approaches and algorithms have been presented in the literature
• The strong influence of fundamental characteristics to each other will require to consider those formulations in one design

model and nowadays this can be achieved with numerical efficiency by using Optimization Techniques.

the optimum design of parallel manipulators a multi-objective optimization problem can be formulated as

[ ])(f),(f),(f)( min KSW XXXXf =
 (10)

Subjected to
g (X) < 0 (11)
h (X) = 0

• There are a number of alternative methods to solve numerically a multi-objective optimization problem with Eqs. (10) and
(11).

• by using a single objective function F(X) and standard constrained optimization methods when the number N of objective
components is limited.
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• wi are weighting factors, which may correspond  or be chosen referring to the relative importance of the objectives.



• the objective functions can be formulated as
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The numerical solution of the design problem with Eqs.(12) and (13) can be very cumbersome and even complex when also
constraints are considered for assembling operations.



At LARM research activity is carried out and is undergoing to enhance the proposed optimum design formulation for parallel
manipulators by using multi-objective optimization and mechanical interpretation of design criteria.
Satisfactory results have been obtained by looking at suitable interpretation of design criteria and analysis formulations, also for
experimental tests of validations.
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