Measuring ACV

Measuring DCV

Measuring CURRENT

Measuring Resistance Two-Wire Technique

- *"Terminals" switch in "FRONT"
- * Press 2W

* Since voltage is sensed at front terminals, measurement includes all lead resistance

- * To eliminate the lead resistance:
- * Short leads together
- * Press Null
- * Original value will now be subtracted from each reading

Measuring Resistance Four-Wire Technique

RMS: Root-Mean-Square

* RMS is a measure of a signal's average power. Instantaneous power delivered to a resistor is: $P = [v(t)]^2/R$. To get average power, integrate and divide by the period:

* An AC voltage with a given RMS value has the same heating (power) effect as a DC voltage with that same value.

* All the following voltage waveforms have the same RMS value, and should indicate 1.000 VAC on an rms meter:

Integrating A/D

T is fixed at one cycle of 50 Hz or 60 Hz to eliminate line noise; Vref is fixed; R, C and Time are all ratioed, so accuracy is excellent.

The DIGITAL MULTIMETER

Hints for Accurate Measurements:

Measure as near full scale as possible

Measure a RATIO rather than an absolute value