PROVA SCRITTA DI TERMODINAMICA PER I CORSI DI LAUREA IN INGEGNERIA 1 DICEMBRE 2005

	Corso di Laurea	Esercizi da svolgere	Indicare il proprio corso di Laurea
	Meccanica	1, 2, 3,	
	Civile	1, 2, 4	
	Elettrica	1, 3, 5	
	Telecomunicazioni	1, 3, 6	
	Ambiente e territorio	1, 3, 6	
Nome:		Cognome:	Matricola:
	Riportare i propri d	ati ed i risultati negli appositi spazi avend	o cura di specificare le unità di misura.
temperatura dimezzare i	di 0,0 °C. Successiv l volume occupato da nbiata dal sistema, il la	amente, con la temperatura che	
	<u> </u>		
Esercizio 2 Determinare termodinam	e le seguenti proprie	tà dell'acqua avendo cura di i	ndicare le relative unità di misura e lo stato
			Stato:
p = 30 bar	$t = 340 ^{\circ}\text{C}$	$h = \underline{\hspace{1cm}} \rho$	=
T = 550 K	s = 7.10 kJ/kgK	p = h	=
p = 0.30 ba	u = 2000 kJ/kg	T = s	=
di liquido s termicament di carico ne ideale a ca	aturo, si utilizza un so te con una portata d'ar llo scambiatore siano	cambiatore di calore a superficie. ia alla pressione atmosferica ed al nulle, che il ΔT all'uscita sia di 5	300°C e pressione di 0,50 bar fino alle condizioni All'interno dello scambiatore l'acqua interagisce la temperatura di 20°C. Supponendo che le perdite 5,0 °C e che per l'aria sia valido il modello di gas essaria, la potenza scambiata nel dispositivo, e la
	$\dot{m}_{aria} = $	<u> </u>	$\dot{S}_{gen} =$
utilizzato è kg/s. Sapeno	R134a. La temperatura lo che la pressione mas l fluido è saturo, valu	a dell'aria esterna è pari a 7,0 °C ssima e minima sono rispettivame	si utilizza una pompa di calore. Il fluido di lavoro, mentre la portata massica di R 134a è pari a 5,0 nte 15,0 e 4,0 bar e che all'ingresso al compressore della macchina utilizzata e la relativa produzione
		•	
intonaco e a mansarda ve Sapendo che 14 W/m²K,	all'esterno da 5,0 cm l engono a trovarsi, in co e il coefficiente di scar	ana di vetro. Durante il periodo i ondizioni di regime permanente, r nbio convettivo unitario interno hi ento della temperatura nella sez	=0,128W/mK) rivestito all'interno da 3,0 cm di nvernale, l'ambiente esterno e quello interno alla ispettivamente alla temperatura di 5,0°C e 20,0°C. è pari 4,00 W/m²K mentre quello esterno è pari a tione e la potenza scambiata per unità di area,

Esercizio 6

Le pareti di una mansarda sono costituite da 35 cm di tufo (k_{tufo} =0,128 W/mK) rivestito all'interno da 3,0 cm di intonaco e all'esterno da 5,0 cm lana di vetro. Durante il periodo invernale, l'ambiente esterno e quello interno alla mansarda vengono a trovarsi, in condizioni di regime permanente, rispettivamente alla temperatura di 0,0°C e 20,0°C. Sapendo che l'altezza della parete H è pari a 2,80 m, che l'aria esterna è in quiete e che la temperatura della superficie esterna è pari a 2,0°C, calcolare la temperatura della superficie interna della parete e la potenza scambiata per unità di area.

T		
· · · =	à≡	
1 sup.int —	g-	