Reti di Calcolatori

Lezione 1

Cenni Storici (1/2)

Gli ultimi tre secoli sono stati dominati ciascuno da una diversa tecnologia che lo ha caratterizzato ed ha avuto profonde influenze sulla vita dell'uomo:

- 18° secolo: sistemi meccanici (rivoluzione industriale);
- 19° secolo: macchine a vapore;
- 20° secolo: tecnologie dell'informazione: raccolta e memorizzazione, elaborazione, distribuzione.

Cenni storici (2/2)

Nel 20° secolo si sono via via diffusi:

- Sistema telefonico;
- Radio e Televisione;
- Calcolatori;
- Satelliti per telecomunicazioni;

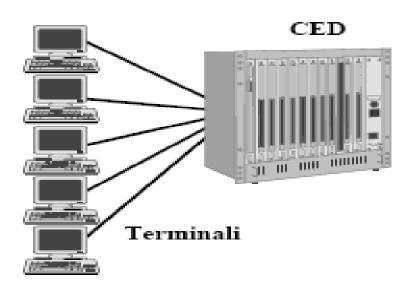
Telematica (1/2)

Lo sviluppo dei sistemi di telecomunicazione e dei calcolatori ha portato alla loro convergenza:

TELEMATICA

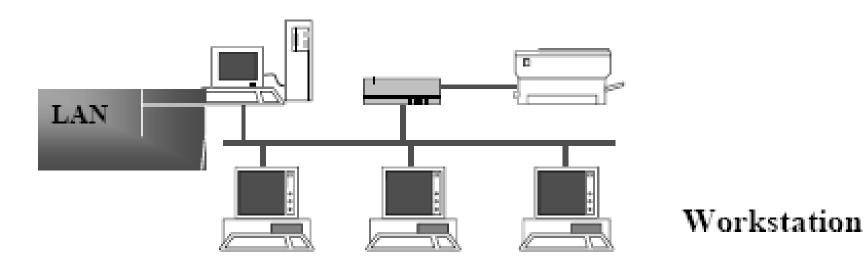
Telematica (2/2)

Comp. di *tele(comunicazione)* e *(infor)matica*, sul modello del fr. *télématique*, termine coniato nel 1978:


- Studia gli aspetti tecnici e scientifici dell'integrazione tra telecomunicazioni ed elaborazione dell'informazione;
- gestione a distanza di sistemi informatici mediante l'impiego di reti di telecomunicazione;
- Studia i servizi informatici che possono essere forniti e fruiti attraverso una rete di telecomunicazione, spec. telefonica o televisiva.

Le Prime Reti

I primi modelli di reti erano del tipo:


Mainframe-terminali

La potenza di calcolo era concentrata in un unico elaboratore, resa accessibile da remoto tramite dei semplici (ed economici) terminali.

Le Reti Oggi

Attualmente vi è un elevato numero di elaboratori **autonomi** e **interconnessi** fra loro:

Una definizione di Rete

Una moderna rete di calcolatori può essere definita come:

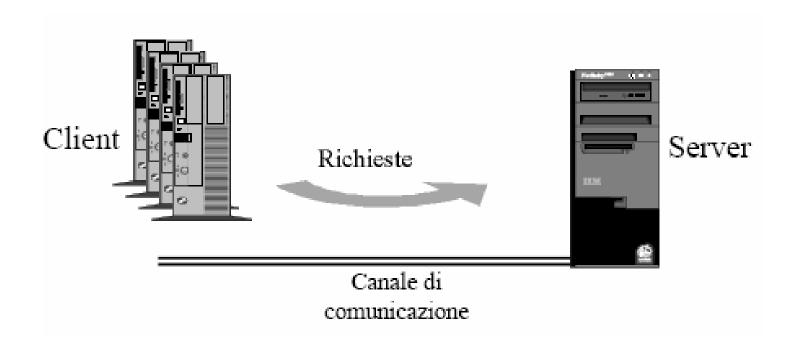
UN INSIEME INTERCONNESSO DI CALCOLATORI AUTONOMI

Utilità delle reti (1/3)

Condivisione risorse

E' possibile rendere disponibili a chiunque, anche distanti migliaia di km;

- programmi
- informazioni.

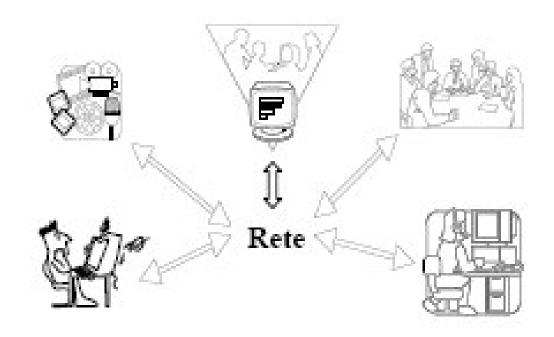

Affidabilità

- sorgenti alternative delle risorse (es. applicazioni e dati) su più computer) possono essere duplicate su più computer messi in rete.
- E' importante in sistemi che devono funzionare a tutti i costi (traffico aereo, centrali nucleari, sistemi militari, ecc.)

Utilità delle reti (2/3)

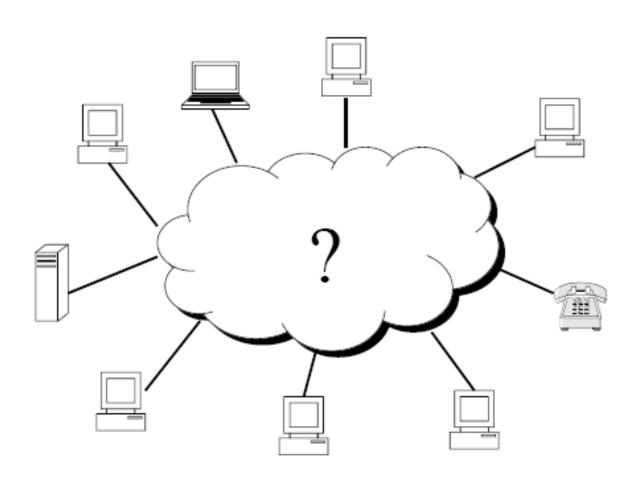
Riduzione dei costi

- una rete di personal computer costa molto meno di un mainframe.
- A volte alcuni elaboratori sono più potenti ed offrono agli altri dei servizi (modello client-server)



Utilità delle reti (3/3)

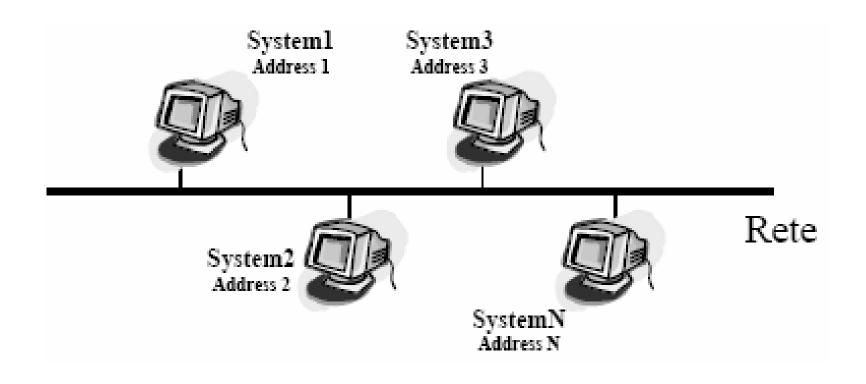
Comunicazione tra persone


E' possibile per esempio:

- inviare messaggi,
- telefonare (VoIP),
- teleconferenze,
- scambiarsi file, ecc.

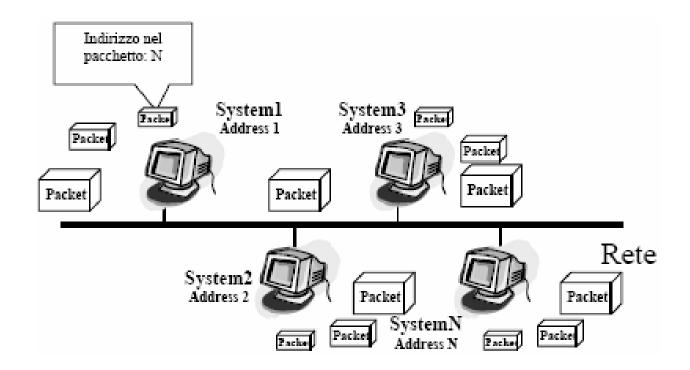
Hardware delle reti (1/2)

Come è fatta una rete di calcolatori?

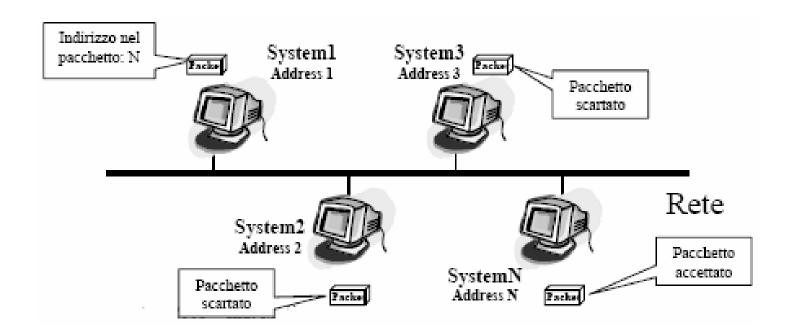

Hardware delle reti (2/2)

- Tecnologia trasmissiva;
- Scala dimensionale
 - Reti locali (LAN), reti metropolitane (MAN), reti geografiche (WAN)
- Interconnessione di reti (Internetworking)

Tecnologia Trasmissiva


Reti broadcast

Tutti gli elaboratori della rete condividono un unico "canale" di comunicazione.


Reti broadcast (1/3)

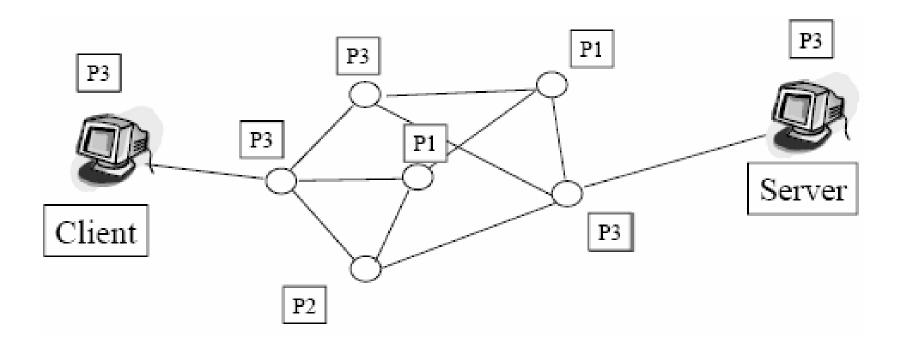
- Messaggi (chiamati pacchetti) inviati da un elaboratore sono ricevuti da tutti gli altri elaboratori.
- Un indirizzo all'interno del pacchetto specifica il destinatario.

Reti broadcast (2/3)

- Quando un elaboratore riceve un pacchetto, esamina l'indirizzo di destinazione;
- Se questo coincide col proprio indirizzo il pacchetto viene elaborato, altrimenti viene ignorato.

Reti Broadcast (3/3)

Le reti di tipo broadcast presentano però un un problema:


Sono intrinsecamente insicure

 Tutte le macchine che sono presenti sulla vostra rete LAN sono in grado di ricevere anche il vostro traffico;

Tecnologia Trasmissiva

Reti punto a punto

Consistono di un insieme di connessioni fra coppie di elaboratori.

Reti Punto a Punto

- Per arrivare dalla sorgente alla destinazione, un pacchetto può dover attraversare uno o più elaboratori intermedi.
- Spesso esistono più cammini alternativi, per cui gli algoritmi di instradamento (routing) hanno un ruolo molto importante.

Scala Dimensionale (1/2)

Un criterio alternativo di classificazione è la scala dimensionale delle reti. In questo contesto si distingue fra:

- reti locali;
- reti metropolitane;
- reti geografiche;

Scala Dimensionale (2/2)

Distanza	Ambito	Tipo di rete
10 m	Stanza	Rete locale
100 m	Edificio	Rete locale
1 Km	Campus	Rete locale
10 Km	Città	Rete metropolitana
100 Km	Nazione	Rete geografica
1000 km	Continente	Rete geografica
10.000 km	Pianeta	Internet (Interconnessione di reti)

Differenze tra le Reti

Reti locali

Le reti geograficamente localizzate tendono a essere broadcast;

Reti estese

Le reti geograficamente molto estese tendono a essere punto a punto;

Tipi di Rete

Le reti vengono classificate in base alla loro estensione geografica:

- LAN: Local Area Network;
- MAN: Metropolitan Area Network;
- WAN: Wide Area Network;

Local Area Network (1/2)

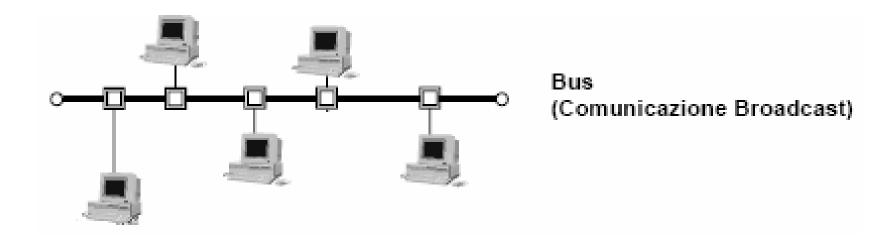
Le principali caratteristiche di una LAN sono:

- Hanno un'estensione che può arrivare fino a qualche km;
- Di norma si estendono in un singolo edificio o campus;
- Sono usate per connettere i PC degli utenti, o anche server.

Local Area Network (2/2)

Altre caratteristiche di una LAN sono:

- Dimensione ridotta (rispetto ad altri tipi di reti);
- Tecnologia trasmissiva di tipo broadcast;
- Topologia:
 - Bus;
 - Ring;


LAN: Topologia Bus (1/2)

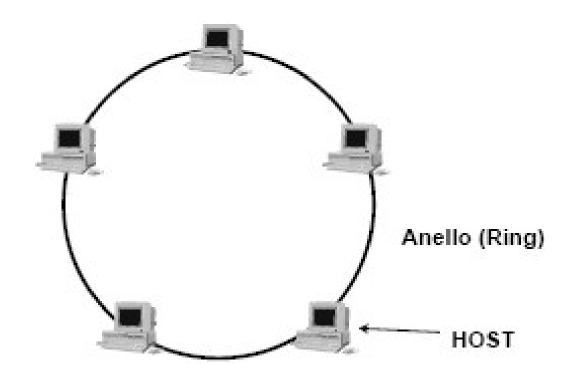
- in ogni istante può trasmettere un **solo** elaboratore;
- è necessario un meccanismo di arbitraggio per risolvere i conflitti;
- L'arbitraggio può essere centralizzato o distribuito

LAN: Topologia Bus (2/2)

Lo standard IEEE 802.3 (Ethernet):

- rete broadcast, basata su un bus, con arbitraggio distribuito, operante a 10 oppure 100 Mbps (oggi anche a 1 Gbit/s e a 10 Gbit/s);
- Gli elaboratori trasmettono quando vogliono; se c'è una collisione aspettano un tempo casuale e riprovano;

L'Arbitraggio Distribuito


Il Meccanismo dell'arbitraggio distribuito è un ottimo esempio di:

Algoritmo distribuito

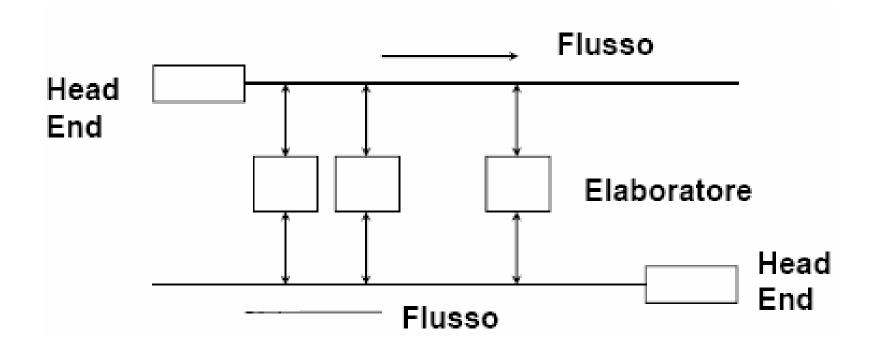
- Un algoritmo si dice distribuito quando il suo effetto (risultato) non è determinato da una singola entità (macchina) ma è basato sull'interazione tra diverse entità, gli agenti;
- Gli algoritmi distribuiti si sono via affermati con la sempre maggiore diffusioni delle reti di calcolatori;
- In una rete di grandi dimensioni è difficile realizzare algoritmi cosiddetti centralizzati che coinvolgono tutti gli elaboratori della rete;

LAN: Topologia Ring (1/2)

Nella topologia a ring (anello) ogni bit circumnaviga l'anello;

LAN: Topologia Ring (1/2)

L'arbitraggio è basato su un meccanismo a token (gettone):


- Ogni calcolatore possiede il token per un certo tempo poi lo passa al suo vicino;
- Il possesso del token abilita alla trasmissione dei dati;
- Non c'è pericolo di collissione;

Metropolitan Area Network

- Hanno un estensione tipicamente urbana;
- Fino a qualche anno fa erano basate essenzialmente sulle tecnologie delle reti geografiche (WAN), utilizzate su scala urbana;
- Successivamente è stato introdotto uno standard IEEE;

MAN: lo standard IEEE 802.6

- Questo standard è anche chiamato: Distributed Queue Dual Bus (DQDB);
- Esiste un mezzo trasmissivo di tipo broadcast (due bus in 802.6) a cui tutti i computer sono attaccati;

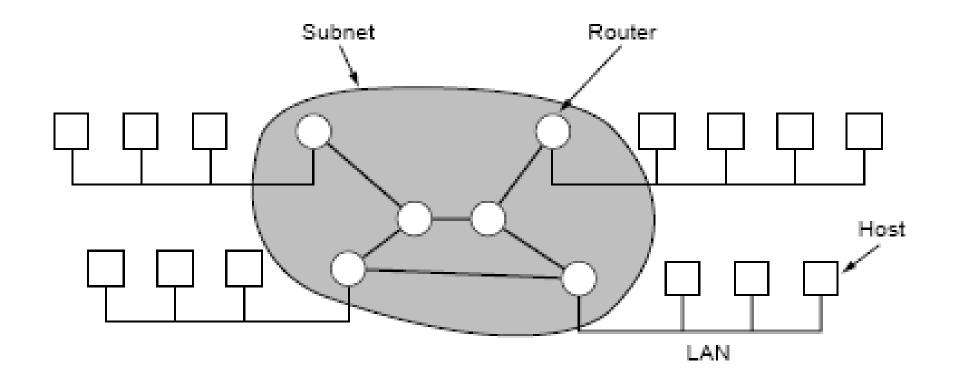
Wide Area Network

- Le reti geografiche (Wide Area Network, WAN) si estendono a livello di una nazione, o anche di un intero continente;
- Viene utilizzata per connettere tra loro reti LAN e MAN;

Wide Area Network

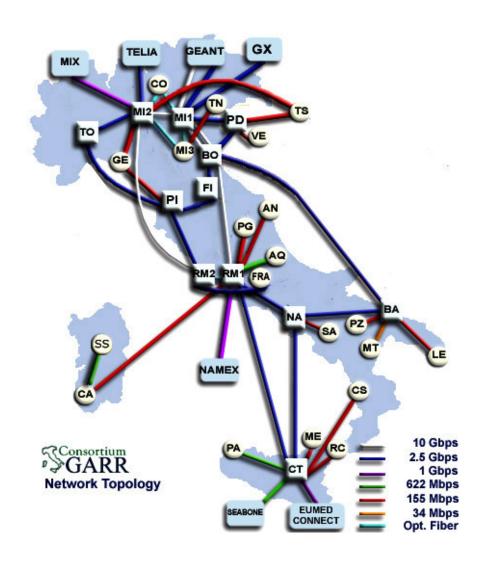
- Una WAN è tipicamente costituita di due componenti distinte:
 - Elementi terminali: costituiti da LAN o MAN;
 - Una sottorete di comunicazione:
 - mette in comunicazione tutti gli elementi realizzando il collegamento fisico tra tutti gli elementi della WAN
 - consente al traffico di fluire tra tutti gli elementi della WAN.

WAN: la Sottorete


linee di trasmissione

mettono in comunicazione tra loro i punti fisicamente distanti della rete (possono essere cavi in rame, fibra ottiche, satelliti, ecc.);

Elementi di commutazione (router):


vengono utilizzati per smistare il traffico tra le varie linee;

WAN: uno Schema

Un esempio di WAN

Un esempio di WAN è la rete GARR: Gruppo Armonizzazione Reti della Ricerca: www.garr.it

Ancora sulle WAN

- In generale una WAN contiene numerose linee (spesso telefoniche) ad alta capacità di traffico, o meglio larghezza di banda che congiungono coppie di router.
- Ogni router, in generale, ha:
 - Più linee di ingresso;
 - Un programma che:
 - legge l'indirizzo del traffico in ingresso;
 - Legge delle tabelle di instradamento (routing);
 - In base alla tabella decide su quale linea di output inviare quel traffico

La Larghezza di Banda

La larghezza di banda di una linea di comunicazione misura:

La quantità di dati che può essere trasmessa nell'unità di tempo

- Si parla anche di capacità di traffico
- La larghezza di banda si misura tipicamente in:
 - bit/sec (b/sec)
 - byte/sec (B/sec)

Esempi di linee di comunicazioni

Rame

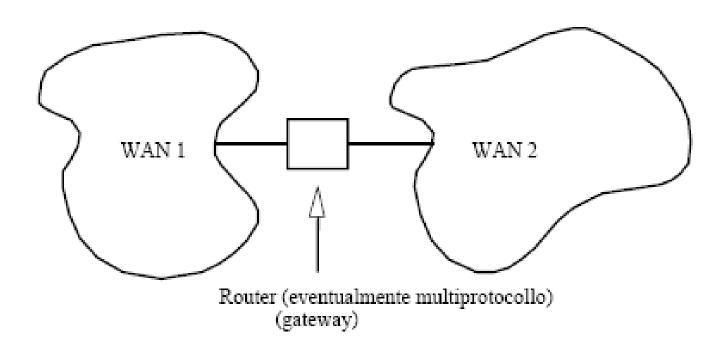
- L'informazione viaggia sottoforma di corrente elettrica a basso voltaggio.
- La larghezza di banda può arrivare fino a qualche centinaio di MB/sec.
 E dipende fortemente dalla lunghezza del cavo.

Fibra Ottica

- L'informazione viaggia sottoforma di impulso di luce.
- La larghezza di banda è teoricamente illimitata ed è soggetta alle limitazioni dovute alle apparecchiature elettroniche utilizzate

Segnali Radio

- L'informazione viaggia sottoforma di onde elettromagnetiche.
- La larghezza di banda dipende dalla frequenza


Interconnessione di Reti(1/2)

 Una internetwork è formata quando reti diverse (solitamente MAN o WAN) sono collegate fra loro.

 Molto spesso bisogna connettere fra di loro reti diverse (spesso incompatibili fra loro).

Interconnessione di Reti (2/2)

L'interconnessione tra reti diverse viene fatta attraverso speciali router multiprotocollo, detti gateway (o router), che oltre ad instradare il traffico in transito lo adattano ai diversi protocolli presenti

Internet

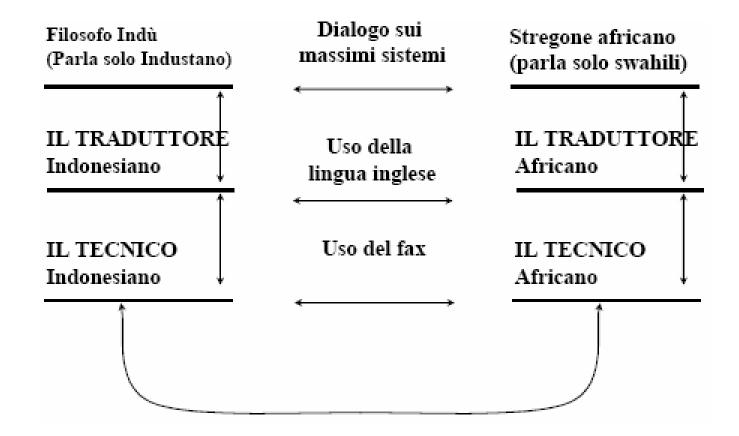
- Una internet è un insieme di reti generiche;
- Internet (I maiuscola) è:
 - NON è né una WAN, né una LAN né una MAN;
 - E un interconnessione di reti diverse, appartenenti ad enti diversi, tenute insieme da un particolare protocollo (TCP/IP);
 - E nata da un embrione costituito da quattro router e qualche workstation (ARPANET) ed è poi evoluta (per aggregazioni successive di reti diverse) nella rete mondiale che oggi conosciamo).

ARPANET (1/2)

- La rete Arpanet è nata da una ricerca finanziata dall'ARPA, agenzia che finanzia la ricerca per il dipartimento della difesa americana (DoD).
- L'obiettivo era quella di avere una rete di comunicazione affidabile e non vulnerabile ad attacchi (nucleari).
- L'idea di base era quella di una rete non gerarchica costituita da elementi distribuiti sul territorio.
- L'altra idea era quella che la comunicazione fra due qualunque entità della rete potesse seguire più percorsi in alternativa, e tali percorsi potessero essere decisi al momento in base all'effettiva situazione della rete.

ARPANET (2/2)

- ARPANET è nata nel 1969 ed era formato da quattro router e qualche workstation;
- Nel giro di pochi anni si è trasformata nella attuale Internet, per aggregazione successiva di reti diverse;



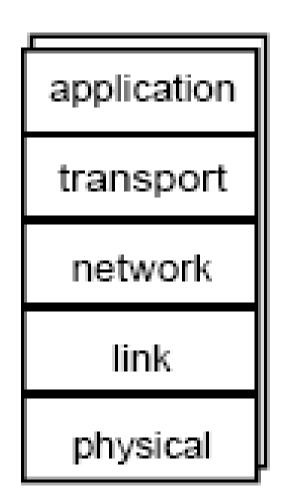
Il Software delle Reti

Software delle reti

Una rete è costituta da macchina diverse; Come è possibile farle comunicare?

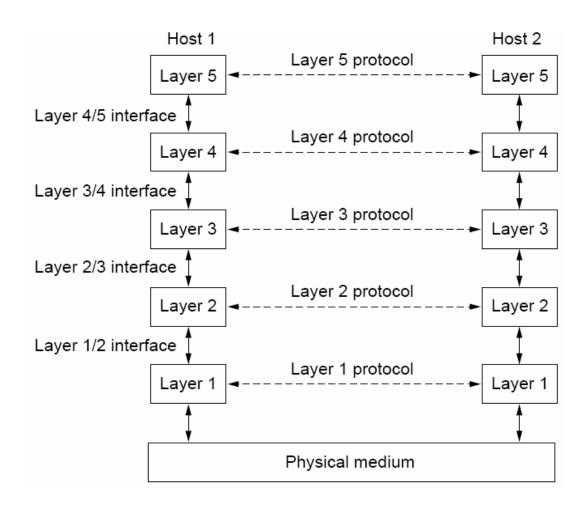
Un analogia:

I protocolli di rete

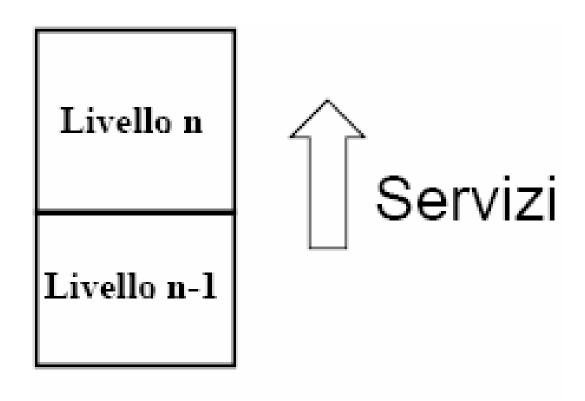

• Una qualunque forma di comunicazione avviene tramite un protocollo che può essere definito come:

Un insieme di regole che disciplinano una conversazione

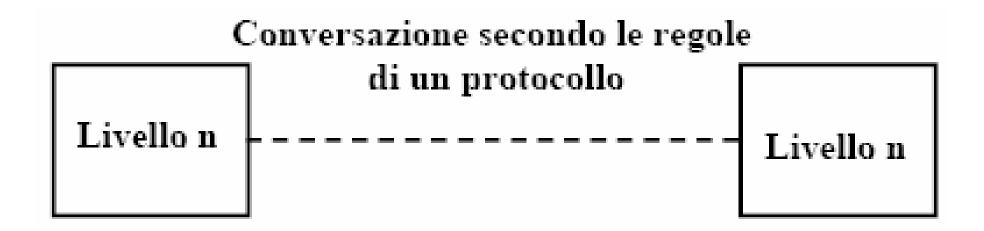
- Aspetti chiave di un protocollo sono:
 - Sintassi;
 - Semantica;
 - Tempificazione;


Lo stack protocollare

- Application: supporta le applicazioni che usano la rete;
- Transport: trasferimento dati tra host;
- Network: instradamento (routing) di datagram dalla sorgente alla destinazione;
- link: trasferimento dati tra elementi di rete vicini (Ethernet);
- physical: bit on the wire;


I livelli di una rete (1/5)

Per ridurre la complessità di progetto, le reti sono in generale organizzate a livelli:


I livelli di una rete (2/5)

lo scopo di un livello è offrire certi servizi ai livelli più alti, nascondendo i dettagli sul come tali servizi siano implementati

I livelli di una rete (4/5)

- Il livello n su un host porta avanti una conversazione col livello n su di un'altro host.
- Le regole e le convenzioni che governano la conversazione sono collettivamente indicate col termine di protocollo di livello n.

I livelli di una rete (5/5)

Le entità (processi) che effettuano tale conversazione si chiamano peer entitiy (entità di pari livello).

Livello N PEER ENTITIY
Livello N