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Abstract

Graphs are widely used to represent complex and structured information of interest in various fields of science and engi-
neering. When using graph representations, problems of special interest often imply searching. For example, searching
for the prototypes representing a dataset of graphs or for the graph that optimizes a set of parameters. In any case,
it is necessary that the problem solution be expressed in terms of graphs. Therefore, defining effective methods for
automatically generating single graphs, or sets of graphs, representing problem solutions, is a key issue. A new evolu-
tionary computation–based approach specifically devised for generating graphs is presented. The method is based on a
special data structure, called multilist, which allows the encoding of any type of graph, directed or undirected, with or
without attributes. Graph encoding by multilists makes it possible to define effective crossover and mutation operators,
overcoming the problems normally encountered when implementing genetic operators on graphs. Further advantages of
the proposed approach are that it does not require any problem specific knowledge and it is able to search for graphs
whose number of nodes is not known a priori. Three sets of experiments were performed to test the proposed approach
and the solutions found were compared with those obtained by other approaches proposed in the literature.
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1. Introduction

It is well known that graphs can be used effectively to
represent complex and structured information. However,
processing large graphs is generally a high computational
cost problem. In the last few years, mainly because of com-
puter technology developments, there has been an increas-
ing interest in studying and using graphs in many applica-
tions. Graphs may effectively represent physical networks,
such as transportation systems, power systems, and mobile
communication infrastructures [1, 2, 3], but have been also
used to model less tangible interactions, as might occur in
ecosystems, databases or in the control flow of computer
programs [1]. Graphs have proved to be suited for model-
ing complex patterns in Pattern Recognition and Machine
Vision, in terms of parts and their relations. Attributes of
graph nodes and arcs are often added to incorporate fur-
ther information, leading to a graph representation gener-
ally known as Attributed Relational Graph (ARG) [4, 5].
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Examples of successful applications include shape analy-
sis and 3-D object recognition [6, 7], character recognition
[8], classification of ideograms and symbols in document
analysis and technical drawing interpretation [9].

Independently of the specific application considered,
using graph representations often requires that the prob-
lem solution be expressed in terms of graphs: for instance,
in the case of pattern recognition applications, the solu-
tion to be searched for may be a set of graphs represent-
ing the prototypes associated with each class to be rec-
ognized, whereas in communication infrastructure appli-
cations the solution may be a single graph representing
the best network configuration. Therefore, defining effec-
tive methods for automatically generating single graphs,
or sets of graphs, representing problem solutions, is a key
issue.

The above problem can be reformulated as a search
problem in which graphs represent solutions in a search
space. As a consequence, effective techniques to explore
such a space and to generate graphs representing tentative
solutions are required. To this purpose, two main different
approaches have been proposed in the literature, according
to the nature of the problem: in the case of applications in
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which examples of the solutions to be modeled are avail-
able, the graphs may be generated by exploiting the infor-
mation held by a training set of samples. In all the other
cases, solutions are searched for by defining a function f
able to measure the goodness of the solutions in the given
search space: graphs representing solutions are found by
looking for maxima of f . Combinatorial, heuristic and in-
ductive learning approaches have been used, among the
others, to generate graphs [10, 11].

In this framework, Evolutionary Computation (EC)
techniques have also been used because they make it pos-
sible to explore complex high-dimensional search spaces
effectively [12]. Their use requires the definition of tech-
niques for graph encoding, in order to represent solutions
in a way suitable for genetic operators.

Graph encoding schemes can be grouped in two cate-
gories: direct and indirect [12]. The former scheme uses
data structures in which each graph element, node or arc,
is directly associated with a particular element of the struc-
ture. An example of this scheme is the adjacency matrix,
in which a graph g having n nodes is represented by an
n × n matrix M , whose element M(i, j) represents the
arc connecting the i–th and j–th node of g. The latter
scheme, instead, includes methods in which a graph g is
represented by the set of rules to be used for building it.
Genetic Programming (GP), for instance, can be adopted
to generate a tree structure encoding such rules.

Most of the methods proposed in the literature use di-
rect encoding schemes since they provide a simple and nat-
ural way of representing graph structures. One of the most
successful applications using a direct encoding scheme is
presented in [13], in which an ANN is optimized and used
to play checkers. EC-based methods that use a direct en-
coding have been also proposed in the fields of molecular
design [14], electrical circuit design [15] and network design
[16, 17]. In this latter field, a direct encoding scheme has
been specifically devised for representing tree structured
solutions, without using any crossover operator.

It is worth noting that these methods adopt graph en-
coding techniques specifically devised for the task taken
into account, whose properties cannot be easily general-
ized. The success of this kind of encoding, although it
could result inefficient in some cases, is due to its sim-
plicity and convergence properties as shown in [18, 19],
while its main drawback is due to the complexity of im-
plementing genetic operators in the general case. In fact,
implementing a crossover operator without imposing any
particular constraint to the graph structure requires the
choice of more than one cut point for each graph, in or-
der to obtain two separate sub-graphs, and of a way for
reassembling redundant or missing arcs.

More recently, in [20] real valued vectors have been
used to directly encode tree–structured graphs. The aim is
to use standard genetic operators for exploring tree search
spaces. In particular, a simple crossover operator has been
defined, which does not require searching for multiple cut
points. The main drawback of this method, however, is

that it cannot be easily generalized for dealing with any
kind of graphs. In [21] a geometric crossover is presented
for solving multiway graph partitioning problems. This
method was devised for solving a specific class of problems,
namely the optimal way of partitioning a given graph in a
fixed number of sub–graphs, and cannot be used for evolv-
ing graphs representing solutions in a given search space.

Indirect encoding was developed for reducing both the
size of graph representations, and the complexity of the ge-
netic operators. In [22], for instance, sets of developmental
rules are used for encoding graphs to solve various size en-
coder/decoder problems. Although some good results was
obtained, the method has shown some limitations because
it often needs to predefine the number of rewriting steps
and it is unable to find detailed connectivity topologies
among graph nodes [12].

In the last decade, Genetic Programming techniques
have been also used for evolving graphs [23]. In this con-
text, a graph is indirectly encoded into an individual by
means of a program tree. The graph is then built by exe-
cuting the program encoded by the tree, which contains
various functions for creating components or modifying
topology. This approach was used in [24] for evolving ana-
log electronic circuits: the reported results are satisfactory
even if the system requires a huge amount of computa-
tional resources. In [25], GP was used for evolving bond
graphs, a modeling tool employed to design multi-domain
dynamic systems such as analog filter circuits and type-
writer drives. Furthermore, in [26] GP was used to gen-
erate graphs representing wireless networks. It is worth
noting that in all the mentioned GP–based systems the
size of the trees encoding the obtained solutions are not
quoted, making it difficult to evaluate the effectiveness of
GP–trees in case of medium and large size graphs.

Even if indirect encoding gave satisfactory results in a
number of applications, its main drawback is that genetic
operators are not applied to graphs, but to the rules gener-
ating graphs. This choice makes easier the implementation
of genetic operators, but it also produces two undesired ef-
fects: on the one hand, genetic operators generally exhibit
a small locality, since it is very difficult to ensure that
small changes in the structure representing a graph re-
sult in small changes in the corresponding graph, making
it difficult to maintain the discovered solutions during the
evolution process; on the other hand, even small changes in
a graph, needed to obtain detailed topologies, may require
complex changes of the rules, which cannot be easily pro-
duced by the genetic operators, thus reducing the search
space exploration effectiveness.

Within the EC framework, in the Genetic Program-
ming (GP) field, graphs have also been used as an alterna-
tive way of representing programs. In fact, while the stan-
dard GP approach uses trees for representing programs,
some researchers have proposed to represent programs by
means of graphs [27, 28, 29, 30, 31, 32, 33, 34]. It is
worth noticing that the just mentioned approaches have
been specifically devised for evolving programs, and seem
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hardly exportable to other fields. Actually, as far as we
know, they have not been applied for different purposes.
On the contrary, the aim of this paper is to present a gen-
eral purpose approach for graph generation. Its possible
application fields are not limited to evolving programs, but
range from optimization problems to Pattern Recognition
and Bayesian networks.

Moving from the above considerations, in [35] we pre-
sented a preliminary study of an EC–based system for
evolving general purpose graphs, whose number of nodes
is not a priori known. The work presented here is an ex-
tension of that study in which a new version of EC–based
system, called EvoGeneSys (Evolutionary Graph Genera-
tion System), is proposed. In this study, the properties
of the genetic operators have been better investigated, the
evolutionary algorithm has been reformulated and further
experiments have been performed.

Our approach uses a direct graph encoding scheme to
explore the search space effectively, and adopts a specifi-
cally devised data structure, called multilist, which allows
graphs to suitably represented so as to overcome the above
discussed problems in implementing genetic operators. In
a multilist, attributes can be associated with both nodes
and arcs, thus allowing either simple graphs or ARG’s to
be represented.

This data structure has proved particularly convenient
for defining a general purpose crossover operator, which
can generate graphs of variable size. In the graph do-
main, crossover involves splitting parent graphs and merg-
ing the resulting parts in order to obtain offspring. As
previously mentioned, a graph cannot be split into two
subgraphs by choosing a single cut point since, generally,
more than one arc has to be broken, while the subgraphs
to be merged may have a different number of arcs to be
reattached: this is the reason why most of the crossover op-
erators presented in the literature [14, 15] imply complex
searching procedures on the graphs. The crossover oper-
ator presented here, on the contrary, requires the choice
of a single cut point on each multilist and allows auto-
matic determination of the arcs to be reattached during
the merging process. Furthermore, a mutation operator
has been also defined, which modifies the multilist in such
a way as to generate a new graph whose node number is
unchanged, whereas both node and arc attributes may be
different. In Section 3.4, it will be shown that the proposed
mutation operator may affect also the number of arcs. As
regards the computational complexity, the application of
our genetic operators implies a computational cost which
is quadratic with respect to the number of nodes in the
individual.

The approach devised was tested on three kinds of
problems. In the first one, the ability of the system to gen-
erate graphs with variable number of nodes and arcs was
tested. The second problem taken into account involves
the configuration of a wireless network, where the solution
to be found is represented by a graph in which nodes cor-
respond to access points, and arcs to wired connections be-

tween access points. The results were compared with those
obtained by using the GP-based approach for graph gen-
eration presented in [26]. The third test involved the One-
Max-tree problem [36], in which a target spanning tree
must be found. The results obtained were compared with
those obtained by a different tree representation scheme
[36].

The paper is organized as follows: Section 2 introduces
the multilist data structure and illustrates how graphs are
encoded by multilists; section 3 describes the proposed
evolutionary algorithm for evolving graphs and provides a
detailed description of the genetic operators; in Section 4
the experimental results are reported, while some discus-
sions and concluding remarks are left to Section 6.

2. Graph Encoding by Multilists

Let G be an Attributed Relational Graph1 of N nodes.
Nodes and arcs in G have attributes respectively belong-
ing to the sets An and Aa. The data structure devised for
representing ARG’s is called multilist (ML in the follow-
ing) since it is based on the list concept and consists of
(N + 1) lists. The first one, called main list, represents
graph nodes with their attributes, thus its number of el-
ements is equal to the number N of nodes in G. In the
following, N will be referred to as size of both the graph
and the multilist representing it. The remaining lists are
called sublists. Each sublist is associated with one node
of G and includes the attributes of a subset of the arcs
connected to that node (see Fig. 1).

In order to preserve information about the nodes inter-
connected by each arc, arc attributes are suitably sorted
in each sublist. Namely, the i-th sublist contains informa-
tion on the arcs connecting the i-th node of the graph to
the nodes following it in the main list, in the order they
appear in such list. If two nodes are not connected, this
information is anyway suitably stored in the proper place
of a sublist. In practice, a NULL relation has been defined
so that even the absent arcs are encoded in the ML rep-
resentation of a graph. For this reason, the length of the
sublist associated with a node regularly decreases as the
position of that node in the main list increases: the first
sublist is made up of (N-1) elements, the second sublist
has (N-2) elements and so on. In fact, the information on
the link between each node and those preceding it in the
main list is already expressed in the preceding sublists. As
a consequence, the sublist of the last node of the graph is
void. Thus, the ML has a triangular shape: the base of
the triangle is the main list and has length equal to the
size N , while the height is represented by the first sublist
and has length (N − 1).

Note that here, in order not to make the paper dull
reading, only simple (i.e., without self-loops) undirected
graphs are considered, thus the relation linking the i-th

1A formal definition of ARG can be found in the Appendix.
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Figure 1: In (a) a generic ML. The horizontal list is the main one,
while the vertical lists are the sublists. The elements of the set An

are denoted by capital letters, while those of Aa are denoted by small
letters. The NULL element is denoted by the letter ’o’. In (b) the
graph encoded by the ML. For each node its position in the main list
is also indicated.

node to the j-th node coincides with the relation linking
the j-th node to the i-th node. This choice does not limit
the generality of the treatment, since considering directed
graphs only requires adding a second attribute for each
sublist element in order to specify arc direction.

The proposed encoding scheme uses a positional nota-
tion: considered a sublist element of a given node n, the
other node possibly connected to it is determined by both
the position of such an element within the sublist, and the
position of the node n within the main list. In practice, the
i-th element of the j-th sublist contains information on the
arc connecting the i-th node to the (j+ i)-th node. In the
following it will be shown that this encoding technique ex-
hibits some properties that will be useful to simplify graph
split and merge.

It is worth noting that the proposed encoding scheme
is not free from the permutation problem [37]. Namely,
there is a many-to-one mapping from the MLs (genotype)
to the actual graph (phenotype). In fact, two different
node orderings of the same graph (see fig. 2(a) and 2(b))
give place to two different MLs (see fig. 2(c) and 2(d)).

The main consequence of the permutation problem is
that it may reduce the effectiveness of the crossover opera-
tor. In fact, if the crossover is applied to different MLs that
represent the same graph, the offspring are likely to con-
tain two copies of some nodes and none of the others. For
this reason, in some cases (e.g., [19], in the framework of an
ANN architecture optimization task) the crossover was not

used, but only a mutation operator was adopted. On the
other hand, it has been shown that the crossover operator
may result very effective in increasing evolution efficiency
[38]. Moreover, Hancock [37], again with reference to ANN
architecture optimization, showed the advantage of using
the crossover operator, in spite of the permutation prob-
lem. The defined crossover operator proved effective for
our purposes, making it also possible to generate individ-
uals of different size.

3. The Evolutionary Algorithm

The ML data structure has been used for developing an
evolutionary algorithm able to evolve graphs. According
to our approach, each individual in the evolving popula-
tion is an ML representing a graph. MLs may be different
sizes, thus allowing exploration of a search space of graphs
with a variable number of nodes. As anticipated in the pre-
vious sections, the ML data structure proved particularly
convenient for implementing both mutation and crossover
genetic operators. While the definition of a mutation op-
erator is relatively simple, independently of the adopted
data structure, the definition of a general purpose cross-
over operator is much more difficult. In fact, the crossover
operator is easy to implement for data structures such as
strings or trees, because in these cases it is simple to se-
lect a single cut point for splitting an individual into two
parts. On the contrary, in case of graphs, splitting an in-
dividual into two subgraphs is much more complex since,
generally, more than one arc has to be broken, while the
subgraphs to be merged may have a different number of
arcs to be reattached. The crossover operator presented
here, exploiting the fact that the ML arranges the nodes
of a graph in a linear structure (the main list), makes it
possible to define effective criteria for automatically deter-
mining both arcs to be broken during splitting and arcs to
be reattached during merging. In order to describe these
criteria, let us introduce two basic operations required by
the crossover operator, namely t-cut and merge.

3.1. t-cut operation

Given a multilist L of size N , representing a graph G
having N nodes, the t-cut operation (1 ≤ t < N) divides
L in a left multilist and a right multilist, respectively con-
taining the first t nodes and the remaining (N − t) ones.
The effect is that of dividing the original graph G into two
sub–graphs, let us say G1 and G2, respectively encoded
by the left multilist and the right multilist. The sublist
of each node in the left multilist contains a subset of ele-
ments representing the connections between that node and
each of the nodes included in the right multilist. Note that
such “redundant” connections represent the arcs that have
been broken in G, except for those encoding the NULL re-
lation. The number of redundant connections is the same
for every node and will be called redundancy degree (Rd)
of the multilist, which, on its turn, will be denominated
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Figure 2: Effects of node order permutation: two different node ordering of the same graph (top) give place to different MLs (bottom).

redundant. The graph G1 containing broken arcs will also
be denominated redundant.
On the contrary, the right multilist cannot contain redun-
dant connections and represents the subgraph made of the
last (N − t) nodes of G. Such multilist will be denomi-
nated complete. Note that the corresponding graph G2 is
canonical.

Considering, for instance, the multilist shown in fig.
3(a) representing the graph shown in fig. 3(b), the t-cut
operation with t = 3 yields the multilists illustrated in fig.
3(c) and 3(d). The corresponding graphs are shown in fig.
3(e) and 3(f).

3.2. Merge Operation

The merge operation generates a new multilist by join-
ing a redundant multilist and a complete multilist. Let us
denote with L1 and L2 the multilists to be merged. Let us
assume that L1 is redundant, is made of N1 nodes and rep-
resents a graph G1 with broken arcs. Let us also assume
that L2 is complete, is made of N2 nodes and represents a
canonical graph G2.

The merge operation is obtained by carrying out the
following steps:

1. generate a new multilist L by appending the main
list of L2 to the main list of L1;

2. compare the redundancy degree Rd1 of L1 with the
size N2:

3. three different cases may occur, according to the re-
sult of this comparison:

• if Rd1 = N2 (see fig. 4) the resulting multilist
L is complete, the corresponding graph G is
canonical and no further actions are needed.

• if Rd1 < N2 (see fig. 5) the resulting multilist L
is a data structure in which some connections
between nodes are missing. In fact, the first
N1 elements in the main list of L represent a
graph G1 where each node may have at most
Rd1 broken arcs, thus allowing merging with at
most Rd1 nodes. This implies that each sublist
of the first N1 nodes holds information about
the connections with Rd1 nodes of L2, while
no information is stored about the connections
with the remaining α = N2 −Rd1 nodes of L2.
These α nodes occupy the last positions in the
main list of L. Therefore, in order to make
L a complete multilist, it is necessary to add
α new elements to each sublist of the first N1

nodes. Note that to minimize the arbitrariness
of the merging process, only NULL connections
are added: in this way, no new arcs are added
and the obtained graphG contains only the arcs
that were present in both G1 and G2.

• if Rd1 > N2 (see fig. 6) the resulting multilist
L is a data structure in which some connec-
tions between nodes are redundant; as previ-
ously discussed, in fact, the first N1 elements
in the main list of L hold information about
the connections with Rd1 nodes to be merged.
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Figure 3: A generic ML (a) and the encoded graph (b). The two multilists (c) and (d) generated by the 3-cut operation applied to the
multilist (a); redundant connections are shaded. The subgraphs encoded by the above multilists (e) and (f).

Since L2 has less than Rd1 nodes, each sublist
of the first N1 nodes contains β = Rd1−N2 re-
dundant elements. Therefore, in order to make
L a complete multilist, β elements in each sub-
list of the first N1 nodes must be deleted. It is
worth noting that a complete multilist L might
also be obtained by appending β new randomly
generated nodes in its main list: following this
approach, however, would lead to increasing the
variability of the obtained multilist, since new
nodes would be added belonging neither to G1

nor to G2.

3.3. Crossover Operator

The crossover operator allows us to generate two new
individuals (offspring) by swapping parts of two individ-
uals (parents) previously selected in the current popula-
tion. In our case, individuals are multilists representing
graphs, thus the effect in the graph space (i.e. the pheno-
type space) is that of selecting two graphs, dividing each
of them in two subgraphs and swapping the extracted sub-
graphs to form two new graphs.

The crossover operator was defined by using the previ-
ously described t-cut and merge operations. Let us assume
that two multilists L1 and L2, having size N1 and N2 re-
spectively, have been selected. Without loosing generality,
let us also assume that N1 ≤ N2. The crossover opera-
tor produces two new multilists M1 and M2, whose size
vary in the interval [N1, N2], by carrying out the following
steps:

1. Choose randomly a number t1 in the interval [1, N1−
1]. Apply the t1-cut operation to L1;

2. Choose randomly a number t2 in the interval [t1, t1+
(N2 −N1)]. Apply the t2-cut operation to L2.

3. Apply the merge operation to the left multilist pro-
duced by the t1-cut operation applied to L1 (point
1) and to the right multilist produced by the t2-cut
operation applied to L2 (point 2);

4. Apply the merge operation to the left multilist pro-
duced by the t2-cut operation applied to L2 (point
2) and to the right multilist produced by the t1-cut
operation applied to L1 (point 1);

The constraint on the value of t2 is introduced to avoid
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Figure 4: An example of merge operation with Rd1 = N2. A redundant ML with redundancy degree equal to 3 (a), and a complete ML of
size 3 (b). The corresponding graphs are shown in (c) and (d). The resulting ML after merging (e) and the corresponding graph (f).

the generation of offspring exhibiting very different size
between them. This constraint force crossover to gener-
ate new individuals whose size is included in the interval
[N1, N2]. Nonetheless, in order to improve the exploration
ability of the evolutionary algorithm, the above constraint
has been relaxed by extending the range in which the size
of the offspring may vary. In particular, a tolerance θ has
been introduced, such that the value of t2 may be chosen
in the interval [t1 − θ, t1 + (N2 −N1) + θ], so allowing the
generation of individuals whose minimum and maximum
size respectively is N1 − θ and N2 + θ. In the experiments
reported in Section 4, the value of the tolerance θ was
arbitrarily fixed to 1.

Notice that the defined crossover operator, differently
from other approaches, does not require any search op-
eration on the graphs to be crossed and exhibits a com-
putational complexity which is quadratic with respect to
the number of nodes in the individual. In [15], for in-

stance, the crossover is implemented by randomly choos-
ing a fixed number of subgraphs for each individual to be
crossed. Therefore, as the number of graph nodes grows,
the number of available subgraphs raises exponentially and
the operator becomes very soon unfeasible.
In [14] the splitting of a graph to be crossed is performed by
randomly choosing a starting arc between two nodes and
then finding and breaking all the paths in the graph con-
necting such nodes (a path is broken by randomly deleting
one of its arcs). Also in this case, splitting a graph requires
searching for all the possible paths between two nodes: this
operation may be computationally very expensive in case
of large graphs.

3.4. Mutation Operator

Our mutation operator actually performs a “micro”
mutation, because it does not modify the structure of the
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multilist it is applied to, but just the attributs of main list
and sublist elements.

Given a multilist L of size N , the mutation is applied
according to a suitable probability pm through the follow-
ing steps:

for each node ni of the main list do
if flip(pm) then

Choose randomly a value belonging to the set An;
Substitute the value of ni with the chosen value;

for each of the elements eij of the i− th sublist do
if flip(pm) then
Choose randomly a value belonging to
the set Aa

⋃

{NULL};
Substitute the value of eij with the chosen value;

end

end

The function flip(p) returns the value true with a probabil-
ity p and the value false with a probability (1− p). Let L

′

and G
′

respectively be the mutated multilist and the cor-
responding graph. Note that G

′

and G contain the same
number of nodes, while the number of their arcs may be
different. In fact, since one of the arc attribute is the pres-
ence or absence of a connection, changing arc attributes
may also result in adding or removing a connection be-
tween nodes. Namely, substituting a value belonging to
the set Aa with the NULL value has the effect of deleting
the corresponding arc, while the opposite has the effect of
adding a new arc. In case of graphs without attributes,
this is obviously the only effect of the mutation operator.
Finally, the computational complexity of the mutation op-
erator is quadratic with respect to the number of nodes in
the individual considered. An example of the application
of the mutation operator is shown in fig. 7.

3.5. Outline of the algorithm

Let us recall that individuals of the evolving population
are MLs, each encoding a graph representing a possible so-
lution of the problem to be solved. The algorithm starts by
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Figure 6: An example of merge operation with Rd1 > N2. A redundant ML with redundancy degree equal to 3 (a), and a complete ML of
size 2 (b). The corresponding graphs are shown in (c) and (d). The resulting ML after merging (e) and the corresponding graph (f). Note
that this ML has been made complete by deleting the last element from each sublist of the first 4 nodes. For the sake of clarity, these elements
are still shown using dashed lines.

randomly generating an initial population of P individu-
als, whose number of nodes ranges from 2 to Nmax. After-
wards, the fitness of these individuals is evaluated. At each
generation, a new population is generated by first selecting
the best e individuals in the current population, in order
to implement an elitist strategy. Then,(P − e)/2 pairs of
individuals are selected with the tournament method. For
each pair, two new individuals are generated by applying
the above defined genetic operators, and copied in the new
population. The algorithm is outlined in the sequel:

begin

randomly initialize a population of P individuals;

evaluate the fitness of each individual;
evaluate the fitness of each individual;
while (termination criteria are not fulfilled) do

copy the best e individuals in the new population;
for i = 0 to (P − e)/2 do

apply the selection mechanism to the current
population: 2 individuals are selected;
replicate the selected individuals;
apply the crossover operator to the selected
individuals (with probability pc);
apply mutation to the offspring
(with probability pm);

9



(a) (b)

(c) (d)

Figure 7: An example of application of the mutation operator: the initial ML (a) and he corresponding graph (b). The resulting ML (c)
and the corresponding graph (d). The mutation changed the attributes of node 3 and of the arc between nodes 2 and 3. Moreover, the arc
connecting nodes 3 and 4 has been deleted.

evaluate the fitness of the offspring;
copy the offspring in the new population;

end

replace the current population with the new one;
update variables for termination criteria;

end

end

4. Experimental Results

In order to ascertain the effectiveness of the proposed
approach, three sets of experiments were performed. The
first set regards a synthetic graph search problem, whereas
the second one concerns a real world planning and opti-
mization problem involving graphs. Finally, the third set
deals with the standard one-max tree problems. In the fol-
lowing, the achieved results on the three problems taken
into account will be detailed.

4.1. Synthetic Graphs

The purpose of this set of experiments was that of eval-
uating the effectiveness of the proposed method for explor-
ing a complex graph search space. Given a target graph
and a fitness function measuring the distance between a
generic graph and the target one, our aim is that of eval-
uating the ability of our algorithm to evolve a population
of graphs in order to generate the target graph. In each
experiment, a synthetic graph generated according to the
random graph model 2 was chosen as target. This a model

2Random graphs are formally described in Appendix 6.

requires fixing both number of nodes and occurrence prob-
ability of arcs (pa), representing the probability that, given
two nodes, an arc is inserted between them. Node and arc
attributes are randomly selected within the sets An and
Aa whose cardinalities were arbitrarily fixed to 26.
Experimenting on synthetic graphs allowed us to evalu-
ate the performance of the algorithm as a function of the
graph complexity, expressed in terms of both number of
nodes and pa. Target graphs were obtained by using the
random graph generator γ(N, p), defined in [39], where
the parameter N represents the number of nodes, while
the parameter p is pa. The sets An and Aa are made of
the following elements:

An = {A,B,C . . . ,X, Y, Z} Aa = {a, b, c . . . , x, y, z}

A set of thirty target graphs whose number of nodes
varies from 10 to 60, with steps of 10, and whose pa ranges
from 0.1 to 0.9, with steps of 0.2, has been generated. In
Fig. 8 the target graph generated by the model γ(20, 0.3)
is shown.

Let’s recall that, according to our encoding scheme,
target graphs, as well as population individuals, are rep-
resented by multilists.

4.1.1. The Fitness Function

The defined fitness function consists of two terms. The
former term measures the node number (i.e., the size) dif-
ference between a sample multilist and the target one. The
latter term measures the attribute similarity between cor-
responding nodes and corresponding arcs of the two multi-
lists by using a distance functionD defined in the same way

10



for both sets An and Aa. If x and y are respectively the
i-th and the j-th element of an ordered set of attributes,
then D(x, y) is equal to |i− j|.

If T is the target multilist, and I a generic individual
in the evolving population, the term of the fitness function
measuring the size difference is:

fs(I) =
∣

∣NT −N I
∣

∣

where NT and N I respectively denote the size of T and I.
The term measuring the attribute difference is:

fa(I) =

N
∑

i=1

∣

∣νTi − νIi
∣

∣+

N
∑

j=1

N
∑

k=1

∣

∣αT
jk − αI

jk

∣

∣

where N = min(NT , N I) and νTi and νIi respectively in-
dicate the attributes of the i-th node of T and I. The
attribute of the arc of T connecting node ni to node nj is
denoted by αT

jk, while the corresponding arc attribute of I

is denoted by αI
jk. Summarizing, the fitness function f of

a generic individual I is defined as a weighted sum of two
terms:

f(I) = wsfs(I) + wafa(I)

where ws and wa represent the weights. Note that f(I) =
0 if and only if I and T are identical.

For all the experiments reported in the following, only
graphs whose size is less or equal to Nmax are allowed to
evolve. Moreover, ws was fixed to 8.0 and wa was fixed to
0.01. These values were selected, after some preliminary
trials, since they allowed the algorithm to achieve better
performances. The high difference between the two values
is justified by the fact that, by definition, the term fa(I)
may assume values much higher than those achievable by
fs(I).

4.1.2. Evolutionary Parameter Tuning

Preliminary experiments were carried out in order to
find effective values for crossover probability pc and muta-
tion probability pm. To this aim, three graph sizes, namely

Figure 8: The random graph generated by the model γ(20, 0.3). In
this case, the model generated 37 arcs interconnecting the 20 nodes).

10, 30 and 45, are considered and, for each size, two ran-
dom graphs with pa equal to 0.5 and 0.9 respectively, were
generated, totaling 6 target graphs. For each of them, the
performance of the graph search algorithm was evaluated
in terms of number of generations needed to find the target
graph.

A set of experiments were performed varying the mu-
tation probability value in the range [10−4, 10−1], keeping
the value of the crossover probability constant (heuristi-
cally fixed to 0.8). This choice is motivated by the con-
sideration that mutation probability is usually assumed to
be very small, so that, on the average, at most one gene in
each individual is modified. Crossover probability is usu-
ally higher, assuming values that typically range from 0.6
to 1.0. During these experiments, the size of the interval
(calledmutation size, ms) in which node and arc attributes
may vary, has been also tuned: assigned a value to ms, a
node or arc attribute may be substituted by one of the
ms symbols preceding or following it in the corresponding
alphabet. Values of ms belonging to the interval [1 − 8]
were tested.

The results of this set of experiments are shown in fig-
ure 9. For the sake of clarity, the results obtained with
mutation probability values for which the algorithm ex-
hibited very slow convergence or did not converge at all,
are not reported. Finally, each plot reports the perfor-
mance averaged over 30 runs. The analysis of the results
shows that the optimal value for the mutation probabil-
ity is determined by the number N of nodes in the target
graph. In particular, denoting with m the total number of
elements included in the main list and in all the sub-lists
(according to the multilist definition, m = (N∗(N+1))/2),
it can be simply verified that the best performance is al-
ways obtained for a value of the mutation probability equal
to 1/m. This behavior suggests that, similarly to classical
genetic algorithms [40], the optimal value for the mutation
probability is the one allowing modification, on average, of
only one element of the multilist: either node or arc. In
fact, considering that the fitness function tends to favor
individuals with a number of nodes equal to that of the
target graph, after the early stages of the evolution, most
of the individuals in the population will have a size very
similar to that of the target graph, and thus for such indi-
viduals the total number of elements included in the main
list and in all the sub-lists will be very similar to m.

The analysis of the results also shows that in case of
target graphs with 10 nodes, the search algorithm is almost
independent of the mutation size, exhibiting very similar
performance for values greater than 1. For larger graph
sizes, the performance reaches its maximum for values of
the mutation size in the range [3− 5], and then decreases
for higher values. Since the value 5 allowed the best results
in all the experiments to be obtained, this value has been
assigned to the mutation size.

As regards the crossover probability, two graph sizes,
namely 10 and 45 were considered. For each size, two ran-
dom graphs with pa equal to 0.5 and 0.9 respectively, were
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Number of generations needed to find a target graph as a function of the mutation probability, for pa values 0.5 (left) and 0.9
(right). (a) and (b), 10 node graphs; (c) and (d), 30 node graphs; (e) and (f), 45 node graphs. In (a) and (b), a logarithmic scale has been
adopted for better displaying the results.

generated, totaling 4 target graphs. For each of them,
the experiments were performed using mutation probabil-
ity and mutation size values determined according to the
results of the experiments previously discussed. In all the
experiments the best performance are obtained with cross-
over probability equal to 1.0. Table 1 shows the values of
the evolutionary parameters used in the experiments.

Finally, in order to investigate the relationship between
crossover and mutation probabilities, a factorial experi-
ment was performed in which four different values for each
probability were considered. More specifically, the the val-
ues 0.0005, 0.001, 0.002 and 0.005 were used used for the
mutation probability, while the values 0.4, 0.6, 0.8 and
1.0 were used for the crossover probability. As for the re-
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(a)

(b)

Figure 10: Number of generations needed to find a 30 node target
graph as a function of the mutation probability for different crossover
probability values. (a) pa = 0.5 and (b) pa = 0.9.

maining parameters, the values reported in Table 1 were
used. The results obtained for a 30 node graph are shown
in Fig. 10. From the figure, it can be observed that the
curves for different crossover probability values have a very
similar shape, this fact seems to suggest that these two
parameters are weakly related, or even not related at all.
The only conclusion that can be drawn from these plots is
that higher crossover probability values give better results
(faster convergence). Note that the curves for other target
graph sizes have a very similar shape and thus they have
been omitted.

4.1.3. Crossover Operator and Heritability

In this subsection several experiments were performed
in order to test the effectiveness of the crossover opera-
tor and, in particular, its heritability. Heritability refers
to the capacity of the crossover operator to produce off-
spring containing meaningful features of the parents. In
Fig. 11 the fitness value of the best individual is plot-

Table 1: Values of the evolutionary parameters used in the exper-
iments on synthetic graphs. The value m is given by the number
of nodes plus the number of sublist elements in the multilist to be
mutated.

Parameter symbol value

Population size P 100
Tournament size T 6
Elitism size es 1
Number of Generations ng 20000
Crossover probability pc 1.0
Mutation probability pm 1/m
Mutation size ms 5
Maximum number of nodes Nmax 100
Minimum number of nodes Nmin 2

ted over the number of generations for 30 and 45 target
graphs. In each plots 4 curves are shown, correspond-
ing to the following values of the crossover probability pc:
0.0, 0.25, 0.5, 1.0. Note that the values are averaged over
30 runs. The number of generations necessary to find the
target graph is also reported: this allows the differences
in the convergence behavior of the algorithm for different
pc values to be highlighted. In particular, the plots show
that the best performance are obtained with pc = 1 and,
more generally, the higher pc, the better the convergence
of the algorithm. These results seem to demonstrate that
the crossover operator has a good heritability. In fact, it
is able to preserve the good sub–graphs structures found
during the evolution, and to combine them in a very effec-
tive way.

4.1.4. Testing

Testing was carried out by generating several target
random graphs with different size and pa. More specifi-
cally, the following sizes were considered: {10,20,30,40,50,
60}. For each size, the following values of pa were used:
{0.1,0.3,0.5,0.7,0.9}, totaling thirty random graphs. For
each graph, thirty runs were performed. The system was
able to find the target graph in every run, demonstrat-
ing its ability to explore search spaces of different size. In
Fig. 12 the average number of generations needed to find
the target graph is shown as a function of target graph
size, for different pa values. The figure shows that, for
each size, target graphs having more arcs need a relatively
larger number of generations to be found, in spite of the
fact that, for a given size, graphs with different pa are
represented by multilists with the same number of sublist
elements.

4.2. Real World Problem

The real world problem taken into account deals with
the design and optimization of a wireless network. In par-
ticular, the wireless access point configuration problem has
been considered. This is a hard non-linear optimization
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(a) (b)

(c) (d)

Figure 11: Fitness of the best individual as function of the number of generations for pa values 0.5 (left) and 0.9 (rigth). (a) and (b) 30 node
graphs; (b) and (c) 45 node graphs.

Figure 12: Number of generations needed to find the target graph as
a function of target graph size.

problem whose scenario is the following: a community is
planning to provide wireless Internet service to its mem-
bers (clients) who are scattered around a given area. A
certain number of access points need to be placed to cover
all clients, because each access point has a limited ser-

vice radius. All access points are wired and one of them
is connected to an Internet gateway. The design problem
consists in determining the optimal configuration of the
APs in the area to be covered. In order to reduce the cost,
a configuration with minimum number of APs and min-
imum length of the wires connecting them is considered
optimal. According to the constraints imposed, the wire-
less access point configuration problem was formulated in
different ways. E.g., in [41] it is assumed that APs are
selected within a pre-specified set of possible points, while
in [26] APs can be located at any place. For the sake
of generality, this second working hypothesis is used and
thus our results will be compared with those presented in
[26]. In order to avoid time consuming evaluations, the
fitness function does not include parameters like transmis-
sion power, channel allocation, bandwidth, antenna direc-
tion, etc. be evolved. Nonetheless, this fitness still has the
essentials of the wireless configuration problem, allowing
fast fitness evaluations. The problem can be formally de-
fined as follows:
ASSUME that all APs are equal and have service radius
rs;
GIVEN a gateway G located at (xG, yG) and a set of N
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Figure 13: An instance of the wireless access point configuration
problem (top). Circled C’s represent clients, while squares represent
APs. The multilist encoding a possible solution (bottom).

clients located at (xc
i , y

c
i ) (i = 1 . . . N), in an area of size

W ×H;
FIND a configuration of wired access points located at
(xAP

i , yAP
i ) (i = 1 . . . NAP ), connected to the gateway

port G in such a way that each client is covered by at least
one AP and the total cost of both APs and wires is mini-
mal.
Thus, let CAP be the cost of each AP and Cw be the cost
of a unit length wire, the aim is to minimize the function:

f = CAP ∗NAP + Cw ∗
∑

|Li|

where Li is the wire length between two connected APs.
Problem solutions can be represented by a graph whose

nodes are the APs and whose arcs are the wired connec-
tions between APs. The set of node attributes is made
up of the AP coordinates in the area to be covered, rep-
resented by couples of integers (see Fig. 13). In the ML
representation encoding the graphs, the value 1 is used to
indicate the presence of an arc, while the value 0 indicates
the absence of an arc, i.e. the NULL relation. In the ex-
periments reported below, AP coordinates assume values
(expressed in unit length) in the range [0 − 1000]. The
positions of the clients to be served are also represented
by integer coordinates within the same range.

In the following the fitness function used for evaluating
the solutions will be defined and the experimental results
obtained for several problem instances will be discussed.

4.2.1. The Fitness Function

To compare the performance of our method properly
with that of the method proposed in [26], the same fitness

function was adopted. In this way, it is possible to ascribe
any difference in the performance of the methods only to
the way the solutions are generated, and not to the way
they are evaluated. According to [26], the definition of the
fitness function has to take into account three aspects of
the problem: the percentage of covered clients, the number
of APs employed and the total length of the wires connect-
ing them. For this reason, the fitness function was defined
as the weighted sum of three terms. The first term Fc

measures how well the clients are covered by the AP con-
figuration: the more clients are covered, the better. The
second term Fw measures how good the connection topol-
ogy is: the shorter the wires used, the better. Finally,
the term FAP estimates the goodness of a configuration as
regards the number of wireless APs employed: the fewer
AP used the better. In order to reflect their different im-
portance for evaluating the goodness of a configuration,
the above three fitness terms are normalized and suitably
weighted. The fitness terms are:

Fc=
4.0 ∗ Cc

Cc + CT

;Fw=
10000

10000 + Lw

;FA=
CT

CT + 1.5 ∗NAP

where Cc is the number of covered clients, CT is the total
number of clients, NAP is the number of APs and Lw is
the total length of wire segments connecting the APs. The
fitness function Ftot is the weighted sum of the above three
terms:

Ftot = 0.7 ∗ Fc + 0.1 ∗ Fw + 0.2 ∗ FAP

As previously mentioned, numeric constants and weights
in the above equations are those proposed in [26].

4.2.2. Testing

The results reported below refer to a set of experiments
performed on 10 different problem instances, obtained by
varying the number of clients from 10 up to 100, with in-
crements equal to 10. The clients in the area to be covered
are randomly placed. In order to have statistically valid
results, 30 runs with different initial populations were per-
formed for each instance. At the end of each run, the best
solution found was stored.

As concerns the parameter values, they were set to the
same values used for the experiments on synthetic graphs
(see Table 1), except than for the mutation size ms. This
value was chosen according to the results on synthetic
graphs, where the optimal value found for the mutation
size ms was 5, i.e. ≈ 1/5 of the size of the alphabet used
(26), in this case, the value ms = 200, i.e. 1000/5, was
chosen.

In Fig. 14 the average number of APs and their stan-
dard deviation (over the 30 performed runs), as a function
of the number of clients, is shown. It can be observed that
the number of APs slightly increases with the number of
clients. This fact demonstrates that our system is able to
optimize the APs number since, as the number of clients
increases, it adds only the number of APs just needed to
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Figure 14: The average number of APs and its standard deviation
as a function of the number of clients are respectively represented by
bars and segments on top of bars.

cover the added clients. Moreover, the system has always
been able to find solutions that cover all the clients. Fi-
nally, the standard deviations assume small values, thus
indicating that the algorithm converges to solutions with
almost the same number of APs, independently of the ini-
tial conditions.

In order to assess the effectiveness of the proposed ap-
proach in finding near optimal connection topology, the
Minimum Spanning Tree (MST) [1] of the complete graph
obtained by considering the AP configuration provided by
our method, has been separately computed. The MST, in
fact, represents the connection topology with the minimum
wiring cost. Problems with different number of clients were
considered and, for each problem, the connection length
found by our algorithm was compared with the optimal
length computed by the MST. In order to get a statisti-
cally valid comparison, 30 runs of the EA were performed
for each considered number of clients.

In the following we will denote by L the mean of the

Figure 15: The average value of the wire length and its standard
deviation as a function of the number of clients, for the solutions
found by our method and by using the MST.

wire lengths found by our system, and by LMST the mean
of the wire lengths corresponding to the MST, over the
30 performed runs. The plot of L and LMST as a func-
tion of the number of clients, is shown in Fig. 15. This
plot makes clear that our system is also able to optimize
connection topologies. In fact, the connection lengths of
our solutions (white bars in the plot) are very close to the
optimal ones of the MST (grey bars). Moreover, the stan-
dard deviations assume quite small values, demonstrating
the robustness of the search process. In Fig. 16 the best
solutions found for the 20, 50 and 100 clients instances
are shown. In these solutions the number of APs used is
respectively equal to 12, 18 and 25. Note that, for these
solutions, the connection topology found by our system
coincides with that found by using the MST. The figure
clearly shows that the APs are distributed so as to cover
all clients, and that the overlaps among APs are very lim-
ited. It is worth noting that pairs of connected APs are
not too far from each other, so reducing the length of the
connections.

The results obtained by our system in solving the wire-
less network access point configuration problem were com-
pared with those presented in [26] where results for 25
and 40 clients instances are reported. These results show
that the approach fails to optimize time AP placement and
connection topology at the same, demonstrating that the
method was not able to evolve graphs. Although a good
AP arrangement was obtained at the end of the evolution,
the system was never able to find a good connection topol-
ogy. Consequently, the authors chose to optimize only the
AP placement and then to use an MST algorithm for op-
timizing the connections: even if the results are quite ef-
fective, they were actually obtained by using a GP–based
approach for evolving only the positions of the APs.

On the contrary, our system allows us to optimize num-
ber and position of the APs in the area, minimizing time
the connection length at the same. The experimental re-
sults confirmed the effectiveness of our approach: good
solutions, comparable with those presented in [26], were
obtained for all the considered instances (see Fig. 15).
These results are very meaningful since they demonstrate
that our algorithm is able to evolve graphs and to find
effective solutions in complex search space.

4.3. The One-Max Tree Problem

In the One-Max-Tree problem [36], a target spanning
tree GT must be found, and the fitness of any other tree is
the number of edges that it shares with the target. More
specifically, the fitness of a generic individual I, encoding
the graph GI is defined as:

f(I) =
N
∑

i=1

N
∑

j=i+1

|lGT

ij − lGI

ij |

where the value of lij is 1 if the arc connecting the nodes i
and j exists, 0 otherwise. The one-max-problem has been
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(a) 20 clients (b) 50 clients (c) 100 clients

Figure 16: The best solutions obtained for 20, 50 and 100 clients. Clients are represented by circles, while APs are represented by white
squares.

used several times as benchmark problem [36, 42, 43]. For
the sake of comparison, the results obtained by our ap-
proach on the One-Max tree problem were compared with
those obtained by a different tree representation scheme
for evolutionary algorithms, called Network Random Keys
(NRK in the following), presented in [36]. In this ap-
proach, a spanning tree T of N nodes is represented by
means of a real valued vector ~v = (v1, v2, . . . , vl), with l =
N ∗ (N − 1)/2 and vi ∈ [0.0, 1.0]. Each element vi corre-
sponds to a possible arc of T , and its value represents the
probability of that arc belonging to T . In [36], optimal
solutions are then searched by means of a simple GA [44].

The comparison was performed on eight randomly gen-
erated instances, with different number of nodes (10, 20,
30, 60) and topology (tree or star). For each instance,
the average number of generations needed to find the op-
timal solution was computed over 30 runs with different
initial populations. As concerns the parameters, the val-
ues shown in Table 1 (first six rows) were used for both
our approach and the comparing one.

In Fig. 17 the average number of generations and its
standard deviation, over the 30 runs, needed to find the
target spanning tree as a function of target spanning tree
size is shown for the compared methods. The figure clearly
shows that the proposed approach needs many fewer gen-
erations to find the optimal solution, and that the perfor-
mance differences strongly increase with the solution size.
In order to investigate whether the performance difference
was due to the parameter values chosen, or to the topol-
ogy of the spanning tree, both methods were tested by us-
ing different selection strategies (tournament and roulette
wheel), different topologies (star or tree) and different val-
ues (0.5 and 1.0) for the crossover probabilities. The re-
sults obtained are reported in Table 2. The table shows
the mean µ and the standard deviation σ, over the 30 runs,
of the number of generations needed for finding the opti-
mal solution. The t-test was performed on the achieved

Figure 17: Average number of generations (and standard deviations)
over the 30 runs, needed to find the target spanning tree as function
of target spanning tree size.

results, and the probability pt that they are drawn from
the same population is also shown. The reported results
confirm the trend shown in Fig. 17: the proposed approach
obtains better results than those of the approach consid-
ered for comparison, and the differences are highly sta-
tistically significant (pt < 10−6). Only for the 10 node
graphs the differences are not statistically significant (ex-
cept for the star topology with tournament selection and
pc = 0.5, where pt = 0.002). As for the crossover proba-
bility pc, from the table it can be observed that the runs
with pc = 1 achieve better results than those obtained by
using the value pc = 0.5. Moreover, it can be also noted
that the tournament selection always yields better results
than the roulette wheel.

µ µ
The first one regarded the search for synthetically gen-

erated target graphs. It was considered in order to test
the ability of the system to find solutions as the complex-
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Table 2: Comparisom results.

Size N Type

Generations
Tournament Roulette wheel
pc = 0.5 pc = 1.0 pc = 0.5 pc = 1.0
multi NRK multi NRK multi NR multi NRK

10

tree
µ 11.87 11.96 10.83 10.5 18.67 19.77 17.23 19.8
σ 1.8 5.7 1.7 8.6 6.7 8.2 6.5 8.1
pt 0.83 0.4 0.57 0.19

star
µ 13.8 26.27 12.27 18.97 30.6 36.2 27.3 33
σ 1.8 20 1.7 17.2 8 17 8 19.5
pt 0.002 0.042 0.11 0.42

20

tree
µ 42 730 35 545 226 685 187 643
σ 5 320 4.4 250 42 340 42 365
pt < 10−6 < 10−6 < 10−6 < 10−6

star
µ 46 750 46 676 230 794 192 800
σ 6.4 370 7.6 385 35 350 37 200
pt < 10−6 < 10−6 < 10−6 < 10−6

30

tree
µ 75 2768 61.43 2787 693 3142 643 3713
σ 10 1312 10.3 780 128 1172 138 1590
pt < 10−6 < 10−6 < 10−6 < 10−6

star
µ 87 2602 74 2783 667 3204 728 3124
σ 13 900 10 850 125 1114 175 1300
pt < 10−6 < 10−6 < 10−6 < 10−6

60

tree
µ 269 9835 226 9456 7095 26,894 5020 25,945
σ 43 1900 36 2050 1050 4100 730 4450
pt < 10−6 < 10−6 < 10−6 < 10−6

star
µ 248 10320 221 9945 6880 27,050 4980 27,450
σ 35 1750 37 1800 920 3750 680 4280
pt < 10−6 < 10−6 < 10−6 < 10−6

ity of the target graphs increases. A set of experiments
was performed using several target graphs with different
number of nodes and occurrence probability of arcs. The
second problem regarded the configuration of a real world
wireless network. This is a hard problem requiring the op-
timization of number, position and connection topology of
the APs in a given area.

5. Results and Discussion

We devised an evolutionary algorithm for generating
graphs, which does not require to fix the number of nodes
of the graphs to be found a priori. The graph representa-
tion is based on a specifically devised data structure, called
multilist, which uses a direct encoding scheme. This rep-
resentation allows us to explore the graph search space
effectively, particularly because it makes the implementa-
tion of the crossover operator very simple and effective.
The defined crossover operator has three main properties:
(i) it is able to generate variable size graphs; (ii) it splits
a graph into two subgraphs without requiring any search
procedure: (iii) it merges two subgraphs identifying the
nodes to be connected in a simple and effective way

Three sets of experiments were performed to test the
proposed approach. The first one regards the search for

synthetically generated target graphs. It was considered
in order to test the ability of the system to find solutions
as the complexity of the target graphs increases. These ex-
periments were performed using several target graphs with
a different number of nodes and occurrence probability of
arcs. In all the experiments, the proposed system was able
to find the given target graphs. Moreover, the heritability
of the crossover operator was also investigated. The results
obtained show that this operator is able to preserve good
solutions found during the evolution process and it effec-
tively combines the meaningful features of the parents.
The second set regarded the configuration of a real world
wireless network. This is a hard problem requiring the op-
timization of number, position and connection topology of
the APs in a given area. The results obtained were com-
pared with those achieved by a GP–based approach for
graph generation, available in the literature. Our system
was able to find good solutions even when the approach
considered for comparison failed.
Finally, the third set of experiments deal with the stan-
dard one max tree problem in which a target spanning
tree must be found. The results achieved were compared
with those obtained by using a different tree representa-
tion scheme published in the literature, specifically devised
for evolving spanning trees. The results showed that our
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system is much faster than the approach considered for the
comparison in finding the optimal solution, and that the
performance differences strongly increase with the solution
size.

6. Conclusions

We have proposed a new general purpose Evolutionary
Computation based approach for evolving graphs (either
simple graphs or ARG’s).

The proposed approach solves two key problems en-
countered when an evolutionary algorithm is used for gen-
erating graphs: it provides a suitable data structure for
the direct representation of graphs and defines effective
operators for manipulating graphs with a variable num-
ber of nodes. Eventually, it has to be remarked that the
proposed approach does not rely on any problem specific
knowledge and therefore it is suitable for dealing with any
problem whose solutions can be represented with graphs.

The main limitation of the proposed approach concerns
the permutation problem, i.e. a many-to-one mapping
from the genotype to the actual graph (phenotype). Even
if this multiple mapping can in principle reduce the effec-
tiveness in exploring the search space, all the experiments
showed that our method allows very interesting results to
be obtained.

Future work will include exploiting the general purpose
nature of the proposed approach. In particular, pattern
recognition applications in which the patterns to be rec-
ognized are represented by means of graphs, and systems
evolving programs represented by graphs, will be consid-
ered.

Appendix

Graphs

A graph G with N nodes, is defined as G = (V,E),
where V = {n1, n2, . . . , nN} is a set of nodes and E =
{〈ni, nj〉 |ni, nj ∈ A} is a binary relation defined on V ,
i.e. a set of ordered pairs of distinct elements in V . The
couples in E are called arcs. A graph G is denominated
undirected if the relation E is symmetric, directed other-
wise. An Attributed Relational Graph (ARG) is a graph
enjoying the following further properties:

1. there is a set, finite or infinite, An, called node at-
tribute set, and a function φn:

φn : V → An

which binds an attribute (an element of the set An)
to each node of the graph;

2. there is a set, finite or infinite, Aa, called arc at-
tribute set and a function φa:

φa : E → Aa

which binds an attribute (an element of the set Aa)
to each arc of the graph.

Random Graphs

Generating graphs according to a random graph model
requires starting with a set of N nodes and randomly
adding arcs between node pairs, according to a given prob-
ability distribution. Different random graph models pro-
duce graphs with different average number of arcs per
node. The most commonly used model is the Erdös–
Reényi one [39], called γ(N, p), in which a graph G with
N nodes is built by fixing a uniform probability p and by
adding an arc between a pair of nodes, according to p,
independently of the other arcs in G.

We adapted the γ(N, p) model in order to generate
undirected random ARG’s. Given the number N of nodes,
the node attribute alphabet An and the arc attribute al-
phabet Aa, the following algorithm was implemented:

for i = 1 to N do

attribute(ni)=rand(An);
end

for i = 1 to Ndo

for j = i to Ndo

if flip(p) then
attribute(〈ni, nj〉)=rand(Aa);

else

attribute(〈ni, nj〉)=NULL;
end

end

The function rand(A) randomly picks an element from
the alphabet A by using a uniform probability distribution.
The function flip(p) returns the value 1 with a probability
p and the value 0 with a probability (1− p).
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