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Abstract

In the framework of handwriting recognition, we present a novel GA–based feature selection algorithm in which feature
subsets are evaluated by means of a specifically devised separability index. This index measures statistical properties
of the feature subset and does not depends on any specific classification scheme. The proposed index represents an
extension of the Fisher Linear Discriminant method and uses covariance matrices for estimating how class probability
distributions are spread out in the considered N−dimensional feature space. A key property of our approach is that it
does not require any a priori knowledge about the number of features to be used in the feature subset. Experiments have
been performed by using three standard databases of handwritten digits and a standard database of handwritten letters,
while the solutions found have been tested with different classification methods. The results have been compared with
those obtained by using the whole feature set and with those obtained by using standard feature selection algorithms.
The comparison outcomes confirmed the effectiveness of our approach.

1. Introduction

It is generally agreed that one of the main factors in-
fluencing performance in handwriting recognition is the
selection of an appropriate set of features for represent-
ing input samples [1, 2, 3, 4, 5, 6, 7]. This has led to
the development of a large variety of feature sets, which
are becoming increasingly larger in terms of number of at-
tributes. The aim is to address the problem of diversity in
style, size, and shape, which can be found in handwriting
produced by different writers [8]. The effect is that the
efficiency of learning algorithms may degrade, especially
in presence of irrelevant or redundant features.

To overcome this problem and maximize classification
performance, many techniques have been proposed for re-
ducing the dimensionality of the feature space in which
data have to be processed. These techniques, generally
denoted as feature reduction [9], may be divided in two
main categories, called feature extraction and feature se-
lection. Feature extraction–based methodologies trans-
form the original feature space into a smaller one. The
transformation can be any linear or nonlinear combina-
tion of the original features [10]. Feature selection–based
approaches, instead, produce as output a feature subset
from the original one, without any kind of transformation
[11]. Such subset is supposed to include the best features
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according to a certain criterion. The role of such crite-
rion consists in identifying the subset providing the most
discriminative power.

The choice of a good feature subset is a crucial step in
any classification process for several reasons:

– The features used to describe the patterns determine
the search space to be explored during the learning
phase. Then, irrelevant and noisy features make the
search space larger, increasing both the time and the
complexity of the learning process.

– If the considered feature subset does not include all
the information needed to discriminate patterns be-
longing to different classes, the achievable classifica-
tion performances may be unsatisfactory, regardless
the effectiveness of the learning algorithm employed.

– Irrelevant and noisy features improperly chosen may
make the learning process ineffective.

– The computational cost of the classification process
depends on the number of features used to describe
the patterns. Then, reducing such number results in
a significant reduction of this cost.

When the cardinality N of the whole feature set Y
is high, the problem of finding the optimal feature sub-
set becomes computationally intractable because of the
resulting exponential growth of the search space, made
of all the 2N possible subsets of Y . Many heuristic al-
gorithms have been proposed in the literature for finding
near–optimal solutions: Greedy selection [12], branch and

Preprint submitted to Elsevier April 2, 2013



bound (B&B) [13], floating search [14]. These algorithms
use greedy stepwise strategies that incrementally generate
feature subsets by adding the feature that produces the
highest increment of the evaluation function. Since these
algorithms do not take into account complex interactions
among several features, in most of the cases they lead to
sub–optimal solutions. An alternative way to cope with
the search problem is that of using Genetic Algorithms
(GAs), which have demonstrated to be an effective search
tools for finding near–optimal solutions in complex and
non–linear search spaces [15]. For this reason, GA-based
search strategies have been widely used to solve feature
selection problems [16, 17, 18, 19, 20, 21]. In [16] and [17],
a Nearest Neighbor (NN) classifier has been used for eval-
uating feature subsets, while in [21] this goal is achieved
by using a Neural Network and by combining the classifi-
cation results with some costs associated to the features.
In particular, in [17], a hybrid mechanism is proposed for
finding better solutions in the neighborhood of each solu-
tion found by the GA. Moreover, comparative studies have
demonstrated the superiority of GAs in feature selection
problems involving large numbers of features [16]. In all
the mentioned approaches, however, the cardinality of the
subset to be found must be a priori fixed. Finally, in [22] a
GA based method is presented, which uses a combination
of Adaboost classifiers for evaluating the fitness of each
individual in the evolving population. The analysis of the
experiments shows that their feature selection method ob-
tains results that are comparable with those obtained by
considering all the features available. Thus, there is no
performance increment, but only a reduction of the com-
putational complexity.

Feature selection methods can be subdivided into two
wide classes, filter and wrapper. Given a feature subset to
be evaluated, filter functions take into account its statisti-
cal properties, while the wrapper ones use the performance
achieved by a certain classifier trained on that subset. Fil-
ters methods generally involve a non-iterative computation
on the dataset, which can be much faster than a classifier
training session. In fact, implementing a classifier for eval-
uating the recognition rate attainable on a given subset,
would require a costly training phase of such a classifier on
a training set and a sample by sample labeling procedure
on a test set. Moreover, filters methods evaluate intrin-
sic properties of the data, rather than the interactions of
such data with a particular classifier: thus, the provided
solutions should be more general, allowing good results to
be obtained with a larger family of classifiers. The main
drawback of filter methods is the fact that the objective
function is generally monotonic, and this imply that the
algorithm tends to select the full feature set as the optimal
solution. This forces the user to select an arbitrary cut-off
on the number of features to be selected. Wrapper meth-
ods generally achieve better recognition rates than filters
ones since they are tuned tacking into account the spe-
cific interactions between the considered classifier and the
dataset. These methods, however, are computationally

expensive since they require that the learning procedure
must be repeated for each feature subset, and the obtained
results will be specific for the considered classifier.

Most of the approaches proposed in the context of
handwriting recognition use wrapper methods [3, 4, 5, 6].
Their main purpose is to reduce the number of features,
keeping the recognition rate unchanged, or at most slightly
worse.

Moving from these considerations, we propose a GA–
based feature selection algorithm in which feature subsets
are evaluated by means of a novel separability index. Our
algorithm belongs to the filter method category and has
been devised by extending the Fisher Linear Discriminant
[23] method. Such method uses covariance matrices for
estimating how the probability distributions of patterns
are spread out in the considered N−dimensional space.
Given a feature subset X, the Fisher’s approach estimates
the separability of the classes in X by taking into account
two aspects: (i) how patterns belonging to a given class
are spread out around the corresponding class mean vec-
tor (the centroid); (ii) distances among class mean vectors.
Moreover, in order to compare subsets with different num-
ber of attributes, and to balance the effects of the mono-
tonic trend of the separability index, we have added to the
objective function a further term, suitable weighted, that
takes into account the cardinality of the subspace to be
evaluated. The proposed approach, thanks to the devised
separability index, presents two main advantages: (i) it
does not require that the dimensionality of the searched
subspace (i.e. the actual number of features to be used) is
a priori fixed; (ii) its performances are independent from
the classification scheme.

The effectiveness of the proposed approach has been
tested by using three standard databases of handwritten
digits and a standard database of handwritten letters (up-
percase and lowercase, totaling 52 classes), while the so-
lutions found have been used to train different classifiers.
The results have been compared with those obtained by
using the whole feature set and with those obtained by us-
ing standard feature selection algorithms. The comparison
outcomes confirmed the effectiveness of our approach.

The remainder of the paper is organized as follows:
Section 2 discusses the feature selection problem, while
Section 3 illustrates the proposed GA–based feature se-
lection method. Section 4 describes the fitness function
based on a specifically devised separability index used for
subset evaluation. In Section 5 the experimental results
are detailed, while some conclusions are eventually left to
Section 6.

2. The Feature Selection Problem

The goal of Feature Selection (FS) is that of reducing
the number of features to be considered in the classifica-
tion stage. This task is performed by removing irrelevant
or noisy features from the whole set of the available ones.
Feature selection is accomplished by reducing as much as
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possible the information loss due to the feature set reduc-
tion: thus, at list in principle, the selection process should
not reduce classification performance. The feature selec-
tion process consists of three basic steps (see Fig. 1): a
search procedure, a subset evaluation and a stopping crite-
rion. A typical search procedure uses a search strategy for
finding the optimal solution, according to a given subset
evaluation criterion previously chosen. The search proce-
dure is repeated until a stopping criterion is satisfied.

Considering a generic application in which a set of sam-
ples (say Z) must be classified, and assuming that the
samples are represented by means of a set Y of N fea-
tures, the feature selection problem can be formulated as
follows: find the subset X ⊆ Y of M features which op-
timizes an objective function J . Given a generic subset
X ⊆ Y , J(X) measures how well the patterns in Z are
discriminated by using the features subset X.

Example of statistical measures used by filter meth-
ods are the following: Distance [24], correlation [11, 25],
information [26] and consistency [27]. Distance-based cri-
teria takes into account the geometrical characteristics of
the class distributions in order to evaluate how well dif-
ferent classes are separated in the subset to be evaluated.
Correlation measures use measures able to estimate the
dependency between couple of variables. Such estimation
can be used to find the correlation between a feature and a
class. If the correlation between the feature x1 and a given
class ci is higher than that between the feature x2 and ci,
then the feature x1 is preferred to x2 for describing the
class ci. A slight variation of this criterion determines the
dependence of a feature on the other ones; this value can
be used to assess the redundancy degree of the features.
Information measures, instead, evaluate the information
gain from a given feature. The information gain of a fea-
ture x is defined as the difference between the a-priori
uncertainty and the expected a-posteriori uncertainty of
the class label given x; the entropy measure can be used
to estimate these uncertainties. Finally, the consistency
measure of a feature subset, is determined counting the
number of samples with the same feature values, but be-
longing to different classes.

Once the evaluation function J(X) has been chosen,
the feature selection problem becomes an optimization prob-
lem whose search space is the set of all the subsets of Y . As

Figure 1: The feature selection process

mentioned in the Introduction the size of this search space
is exponential (2N ). As a consequence, the exhaustive
search for the optimal solution becomes infeasible when
a large number of features (N > 50) is involved. Search
strategies like branch and bound [28] have been proposed
to strongly reduce the amount of evaluations, but the ex-
ponential complexity of the problem still remains. The
exponential size of the search space for the feature selec-
tion problem makes appropriate the use of heuristic algo-
rithms, for finding near–optimal solutions. Among these
search algorithms, greedy search strategies are computa-
tionally advantageous but may lead to suboptimal solu-
tions. They come in two flavors: forward selection and
backward elimination. Forward selection strategies gener-
ate near–optimal feature subsets by a stepwise procedure
which starts with an empty set. At each step the fea-
ture, among those not yet selected, that most increases
the evaluation function J is added to the so far built sub-
set; this procedure is repeated until a stop criterion is not
satisfied. In backward elimination, instead, the whole sub-
set of feature is initially considered, and at each step the
feature that least reduce the evaluation function is elim-
inated. Both procedures are optimal at each step, but
they cannot discover complex interactions among several
features, as is the case in most of the real world feature
selection problems. Then heuristic search algorithms, like
genetic algorithms and simulated annealing [29] seems to
be appropriate for finding near–optimal solutions which
take into account multiple interactions among several fea-
tures.

3. The proposed method

In the framework of filter approaches to the feature se-
lection problem, we propose a new method based on the
use of Genetic Algorithms (GAs). These algorithms belong
to the evolutionary computation paradigm [15], which has
shown to be very effective for solving optimization prob-
lems whose search spaces are high dimensional, discontin-
uous and complex. Mimicking the phenomena of natural
evolution of species, GAs allows us to evolve a popula-
tion of possible solutions, where each of them (denoted as
an individual in the GA jargon) is represented as a bi-
nary string. Crossover and mutation operators are used to
modify such strings in order to explore the search space,
i.e. the set of all possible solutions. The method presented
here has been implemented by using a generational GA, in
which individuals are binary vectors each encoding a fea-
ture subset. More specifically, given a feature set Y having
cardinality N , a subset X of Y (X ⊆ Y ) is represented by
an individual I having N elements whose i-th element is
set to 1 if the i-th feature is included in X, 0 otherwise
(see Fig. 2).

Besides the simplicity in the solution encoding, GAs
are well suited for this class of problems because the search
in this exponential space is very hard since interactions
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Figure 2: An example of feature subset encoding by means of a bit
string.

among features can be highly complex and strongly non-
linear. The algorithm starts by randomly generating a
population of P individuals, whose values are set to 1 ac-
cording a given probability (called one prob). Such prob-
ability is usually set to low values (≈ 0.1) in order to force
the early stage of the evolutionary search toward solutions
having a small number of features. Then, the fitness of
the generated individuals is evaluated by means of a suit-
ably defined fitness function. This function takes into ac-
count how well the samples belonging to different classes
are separated in the feature subset encoded by an individ-
ual, favoring at the same time the discovery of solutions
containing a smaller number of features. After this evalua-
tion phase, a new population is generated by first copying
the best e individuals of the current population in order
to implement an elitist strategy. Then (P − e)/2 couples
of individuals are selected using the tournament method,
which allows both loss of diversity and selection intensity
to be controlled [30]. The one point crossover operator
is then applied to each of the selected couples, according
to a given probabilit fator pc. Afterwards, the mutation
operator is applied. Then, the fitness funct o is computed
according to the method illustrated in the next Section.
Finally hese in ividuals are added to the new population.
The process jus described is re eated for Ng generations.
Note that it would be possible that some of the individuals
generated according to the above process encode feature
subset for which it is not possible to compute the fitness
function. These solutions are simply discarded by the GA
and a new offspring are generated by selecting other new
parents in the current population.

4. Fitness Function

The proposed fitness function takes into account two
terms: in the first one, a function J , called separability
index, measures the separability of the patterns belonging
to different classes in the feature subset encoded by an
individual. The second term takes into account the cardi-
nality of the subset so as to favor solutions containing a
smaller number of features.

The separability index J has been derived from the
Multiple Discriminant Analysis (MDA) approach. MDA
is an extension to C–class problems (C > 2) of the Fisher’s
linear discriminant [23], which has been defined for finding

the best linear combination of features in case of two class
problems.

In our case, assuming that each feature can be mod-
eled as a random variable, the separability index J can
be computed by using the covariance matrix of the whole
feature set. Before providing the definition of J , let us re-
call some general properties of covariance matrix, Fisher’s
Linear Discriminant and Multiple Discriminant Analysis.

Covariance matrix is the generalization of variance of
a scalar variable to multiple dimensions. While variance
measures the dispersion of the values of a random variable
around its mean value, the covariance matrix of n variables
measures how the joint probability distribution of the vari-
ables is spread out in the considered n−dimensional space
around the mean vector. In particular, given n random
variables {x1, x2, . . . , xn}, each sampled by considering m
values (stored in a m × n matrix D), the covariance ma-
trix Σ is a n×n matrix in which the element at row i and
column j represents the covariance between the variables
xi and xj :

Σ [i, j] = Cov (xi, xj)

The covariance matrix is symmetric, in fact the generic
element Cov (xi, xj) is defined as follows:

Cov (xi, xj) =
1

m

m∑
l=1

(D [l, i]− µi) (D [l, j]− µj) (1)

where µi and µj are the mean values of the elements in
the i−th and j−th column of D, respectively 1.

If samples belonging to different classes are represented
in as points in a N−dimensional space, the k−th class can
be described by using its covariance matrix Σk, which is
obtained by considering only the samples belonging to the
class k. Such a matrix, in fact, reports information about
the variability of k–th class samples around their mean
vector µ⃗k.

Denoting with c0 and c1 the classes to be discriminated
and with ω the label associated to a sample x⃗, the Fisher’s
Linear Discriminant (FLD) [23] approach assumes that the
conditional probability density functions p(x⃗|ω = c0) and
p(x⃗|ω = c1) are normally distributed with mean and co-
variance parameters (µ⃗0,Σ0) and (µ⃗1,Σ1), respectively. It
is also assumed that both classes have the same a priori
probability (P (c0) = P (c1)). The goal of FLD approach is
to find the vector w⃗∗ representing the locus of the points
where the samples are projected, which best separates the
two classes. To this aim, the separation between the above
distributions (denoted as class separability S in the fol-
lowing) has been computed as the ratio of the variance
between the classes to the variance within the classes:

1Note that the element Σ [i, i] represents the variance of the vari-
able xi
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S(w⃗) =
σ2
between

σ2
within

=
(w⃗T µ⃗1 − w⃗T µ⃗0)

2

w⃗TΣ0w⃗ + w⃗TΣ1w⃗
= (2)

w⃗T (µ⃗1 − µ⃗0)(µ⃗1 − µ⃗0)
T w⃗

w⃗T (Σ0 +Σ1)w⃗
(3)

According to the FDL theory, it can be shown that the
best separation occurs when:

w⃗ = w⃗∗ = (Σ0 +Σ1)
−1(µ⃗1 − µ⃗0) (4)

Note that the vector w⃗∗ is normal to the discriminant hy-
perplane and can be computed through eq. (4) only if the
matrix resulting from the sum (Σ0 + Σ1) is nonsingular,
i.e. invertible.

When there are C classes to be discriminated, the anal-
ysis just described can be extended to find the (C − 1)-
dimensional subspace, which maximizes the class separa-
bility S. Note that if N is the number of available fea-
tures, such subspace can be represented by means of a
N × (C − 1) matrix W. Such a matrix is composed of
(C − 1) N -dimensional vectors, representing the (C − 1)
projections on the transformed space. This approach is
usually denoted in the literature as Multiple Discriminant
Analysis(MDA). In this case, the variances σ2

between and
σ2
within can be expressed in terms of two matrices denoted

as within-class scatter matrix ΣW and between-class scat-
ter matrix ΣB :

ΣW =

C∑
k=1

P (ck)Σk

ΣB =

C∑
k=1

P (ck)(µ⃗k − µ⃗0)(µ⃗k − µ⃗0)
T

where P (ck) denotes the a priori probability of the k–
th class, Σk and µ⃗k are the covariance matrix and the
mean vector of k–th class, respectively, and µ⃗0 denotes
the overall mean:

µ⃗0 =
C∑

k=1

P (ck)µ⃗k

Note that the within-class scatter matrix ΣW measures
the average spread of the classes about their mean vectors,
while the between-class scatter matrix ΣB measures the
distances between each class mean vector and the overall
mean.
According to the MDA theory, the class separability S can
be measured as follows:

S(W ) =
|WTΣBW|
|WTΣWW|

(5)

where | · | indicates the determinant.
In this case the best separation is obtained by select-

ing the projections that give the best separation among

classes. Such projections individuate the subspace repre-
sented by the N × (C − 1) matrix W ∗, written as:

W ∗ = Σ−1
W ΣB

The matrix W ∗ allows a transformation of the original
space in the projected space, thus a dimensionality reduc-
tion from a N to C − 1. Such a mapping is a good way
to handle the curse of dimensionality but, as explained
in [23], it can not possibly allow to obtain the minimum
achievable error rate, especially in case of very large data
set. Moreover the computational complexity of finding the
optimal W ∗ is dominated by the calculation of the inverse
of the within-class scatter matrix (Σ−1

W ). Note that the
matrix ΣW can be obtained by computing the covariances
Σk (k = 1, .., C) through equation (1), but the computa-
tion of Σ−1

W requires that |ΣW | ̸= 0 and this condition is
not always verified. Finally, it is worth noticing that the
Multiple linear discriminant method does not directly rep-
resent a classification method, but rather it provides the
subspace in which the classes are best separated: in this
subspace a classification scheme must be defined in order
to classify the patterns.

Moving from the above consideration, the basic idea
of our approach is that of managing the curse of dimen-
sionality by finding the optimal mapping from the original
N -dimensional space to a M -dimensional one obtained by
considering only a subset of M features among the whole
set of N available ones. In other words, we have reformu-
lated the feature extraction problem as a feature selection
one, in which the effectiveness of the selected feature sub-
space is measured by using the class separability S defined
in eq. (5). Following this approach, the matrix W is com-
posed of M N -dimensional vectors, representing the axes
of the transformed M -dimensional subspace. Such axes
constitute the orthonormal basis of this M -dimensional
subspace, and each of them coincides with one of the axes
of the original N -dimensional feature space. Note that we
do not assume that the selected features are independent,
even if the considered subspaces are orthogonal: in fact,
the orthogonality of the subspaces is simply a direct con-
sequence of the basic assumption of our approach, which
try to solve a feature selection problem and not a feature
extraction one.

Let us now provide a formal definition of the separabil-
ity index J : given an individual I, representing a feature
subset X having dimensionality M , the separability index
J(I) is computed as follows:

J(I) = tr(
WTΣBW

WTΣWW
) (6)

where W is the transformation matrix2 from the original
N -dimensional space to the M -dimensional subspace cor-
responding to the subset X, while the symbol tr(.) is the

2For example, if N = 4 is the cardinality of the whole feature
space and the individual I = (0, 1, 0, 1) encodes the subspace X
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trace operator. High values of the separability index J(I)
indicate that, in the subspace represented by the individ-
ual I, the centroids of the classes are well separated and,
at the same time, the patterns are not too much spread
out around their mean values. Without loosing generality,
we have modified the eq. (5) using the trace operator: in
fact, even if there is no mathematical equivalence between
eq. (5) and eq. (6), it has been demonstrated in [10] that
they provide the same set of optimal features. Therefore,
we have chosen eq. (6), which is computationally more
effective.

Eventually, let us now define the fitness function used
by our GA-based feature selection method: given an in-
dividual I, its fitness value F (I) is computed by applying
the formula:

F (I) =
J(I)

N
+K

N −NI

N
(7)

where N is the total number of features available, NI is
the cardinality of the subset represented by I (i.e. the
number of bits equal to 1 in its chromosome) and K is a
constant value used to weight the second term.

Note that in the first term, the separability index J
has been divided by N so as to assure that both terms
of eq. (7) range from 0 to 1. The second term has been
added since the first one exhibits a monotonic trend with
the number of features. In fact, starting from a certain
set of features, if we add any further feature, the sepa-
rability index J do not decrease its value unless the new
feature set makes the matrix ΣW not invertible. In this
case, obviously, the separability index cannot be computed
and the new solution must be discarded. Thus, using as
fitness only the first term of eq. (7), the GA may produce
solutions in which there are features not contributing to in-
crease separability index J . These solutions are penalized
by the presence of the second term. Finally, as regards the
constant K, its role is to weight the second term in such a
way that individuals having more features are favored only
if they exhibits higher values for the separability index.

5. Experimental Results

In order to ascertain the effectiveness of the proposed
approach, four real world datasets involving handwritten
characters have been taken into account. Since our ap-
proach is stochastic, as well as all the EC–based algo-
rithms, 20 runs have been performed for each experiment

having cardinality 2 (features 2 and 4) the matrix W is the folowing:

W =


0 0
1 0
0 0
0 1


Note that if Σ is the 4× 4 covariance matrix, the product WTΣW

gives as result the 2× 2 matrix Σ
′
, which represents the projection

of Σ on the subspace encoded by the individual I.

carried out. The ability of our system in finding good sub-
sets has been evaluated by measuring the performance ob-
tained with three classification algorithms: Support Vector
Machine (SVM) [31], Multiple Layer Perceptron (MLP)
and k–Nearest Neighbor (k–NN) [23]. To this purpose,
at the end of each run, the best feature subset found has
been used for training the considered classifiers and for
evaluating their performance.

As regards the SVM, we used the implementation pro-
vided by the LIBSVM public domain software [32]. In
the experiments described in the following we used three
different kernels: Radial Basis Function (RBF), Polyno-
mial and Sigmoidal. For the k–NN and MLP classification
algorithms, we used the implementation provided by the
WEKA tool [33]. As regards the evolutionary parameters,
shown in Table 1, they have been heuristically found per-
forming a set of preliminary trials; this set of parameters
has been used for all the experiments reported below.

The main objectives of the experiments are the follow-
ing:

• To investigate the influence of the cost factor K on
the performance of the system.

• To study if the selected feature subsets are indepen-
dent of the choice of the used classifier. To this aim,
the subsets found have been used to train the con-
sidered classification algorithms with different sets of
parameters.

• To perform a comparison of the obtained results with
those of other feature selection algorithms reported
in the literature.

In the following, the datasets used and the experiments
performed are detailed.

5.1. The Data Sets

We have used in the experiments three standard data-
bases of handwritten digits and a standard database of
handwritten letters (uppercase and lowercase, totaling 52
classes). Two of them (OPTODIGIT and MFEAT) are
publicly available from the UCI machine learning reposi-
tory [34], the third one (MNIST) has been made available
by the New York University [35], while the last one (NIST-
SD19) is provided by the National Institute of Standard
Technologies [36].

Table 1: The evolutionary parameters

Parameter symbol value
population size P 100
tournament size t 5
elitism size e 1
crossover probability pc 0.6
mutation probability pm 1/N
generation number Ng 1000
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Figure 3: Recognition rate RR (top) and number of features NI (bottom) as a function of the constant K for MFEAT dataset.

The MFEAT dataset (Multiple Features Data Set) con-
tains 2000 instances of handwritten digits, 200 for each
digit, extracted from a collection of Dutch utility maps.
Data are described by using six different sets of features,
totaling 649 features. Each set of features has been used to
describe all the handwritten digits, and arranged in sepa-
rate datasets. This implies that we have 6 datasets (DS1,
. . . , DS6), each containing 2000 samples. For each dataset,
the type of features and their number are the following:

DS1: 76 Fourier coefficients of the character shapes;

DS2: 47 Zernike moments;

DS3: 6 morphological features.

DS4: 64 Karhunen-Love coefficients;

DS5: 240 pixel averages in 2 x 3 windows;

DS6: 216 profile correlations.

More details about the feature sets can be found in [37].
Starting from the provided datasets we generated a further
dataset (DS) obtained by merging all the descriptions in-
cluded in the previous ones, in such a way to describe each
sample by the whole set of 649 available features. From the
generated dataset DS, 70 samples per class have randomly
extracted to build a training set (TR). The remaining data
have been used to build a test set (TS) including 130 sam-
ples per class. Summarizing, TR contains 700 samples,
while TS contains 1300 samples.

The second considered dataset is the Optical Recog-
nition of Handwritten Digits Data Set (OPTODIGIT). It
contains 5620 samples equally distributed among the ten
classes. Each sample is described by 64 features. Such
data have been obtained by preprinted forms, extracting
normalized 32x32 bitmaps of handwritten digits. Each

bitmap is divided into non-overlapping blocks of 4x4 and
the number of black pixels are counted in each block. This
generates an input matrix of 8x8 where each element is an
integer in the range [0, 16]. As a consequence, a charac-
ter is represented by a feature vector of 64 elements where
each element contains a value of a 8x8 matrix. In order
to build a training set, 3820 samples have been randomly
picked up from the original dataset, while the remaining
ones (1800) have been used as test set.

The third dataset taken into account is MNIST. Such
dataset was constructed from NIST’s Special Database 3
and Special Database 1 which contain binary images of
handwritten digits [35]. The original black and white im-
ages from NIST were size normalized to fit in a 20x20
pixel box while preserving their aspect ratio. The resulting
images contain grey levels as a result of the anti-aliasing
technique used by the normalization algorithm. The im-
ages were centered in a 28x28 image by computing the
center of mass of the pixels, and translating the image so
as to position this point at the center of the 28x28 field.
Finally, the MNIST training set is composed of 60, 000
samples, while the test set contains 10, 000 samples. The
total number of features used to describe samples is 780,
even if some of them assume values different from zero in
less than 1% of samples. For this reason, we discarded such
features considering in our experiment only 485 features.

Finally, the NIST-SD19 database (NIST in the follow-
ing), contains binary alphanumeric characters. In partic-
ular, we have considered handwritten letters, uppercase
and lowercase, corresponding to 52 classes. The handwrit-
ing sample form hsf4, containing 23941 characters, has
been used as training set, while the handwriting sample
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Figure 4: Recognition rate RR (top) and number of features NI (bottom) as a function of the constant K for OPTODIGIT dataset.

form hsf7, containing 23670 characters, has been used as
test set. hsf4 has 11941 uppercase characters and 12000
lowercase ones, while hsf7 has 12092 uppercase charac-
ters and 11578 lowercase ones. In each form, characters
are segmented and stored in 128x128 pixel images, each
associated to one of the 52 classes to be discriminated.
Samples are represented by using the features proposed in
[38]. Each character is described by a feature vector con-
taining the measures associated to different parts of the
image. More specifically, the image is divided in six parts
and, for each part, 22 features are computed, totaling 132
features.

5.2. The Constant K

Several experiments have been performed for analyz-
ing how the constant K affects the behavior of our feature
selection method, in terms of both number of features and
classification performance. Such a performance refers to
the use of RBF SVM classifiers. As expected, the higher
K the lower the number of selected features and the ob-
tainable classification results. For the sake of clarity, we
have not reported in the following plots the values of K
for which the performance is too much degraded.

In the figures 3, 4, 5 and 6 we have reported both the
recognition rate (RR) and the number of features (NI/N)
for the datasets MFEAT, OPTODIGIT, MNIST and NIST,
respectively. For each value of K we have reported the av-
erage result over the 20 performed runs. Note that we have
shown in the figures only the standard deviations, which
do not assume negligible values.

As regards the MFEAT dataset, the figures 3 shows
that for a large interval of K values, the performance is

almost constant obtaining the highest value for K = 0.01.
This value has been chosen hereafter in the experiments
for MFEAT dataset, even if values up to 1.0 may be used
slightly reducing classification performance, but strongly
reducing also the dimension of the feature space. Similar
considerations hold for the other two datasets: in particu-
lar for OPTODIGIT dataset the optimal value chosen for
K is 0.05, even if the value K = 0.5 results in a very small
reduction of the recognition rate, but using only less than
30% of the available features. For the MNIST dataset,
the optimal value chosen for K is 0.001, even if the value
K = 0.5 corresponds to a small reduction of the recogni-
tion rate, but using only the 10% of the available features.
Finally, as regards NIST, the optimal value chosen for K
is 0.1, even if the value K = 0.1 corresponds to a small
reduction of the recognition rate but using only less than
20% of the available features.

Summarizing, as shown in figures 3, 4, 5 and 6, the
trend of RR as a function of K is very regular: there is
an interval of values of K in which RR assumes an almost
constant or slightly increasing trend and then it rapidly
decreases. Thus, exploiting the regularity of RR curve,
a general experimental procedure for setting the value of
the parameter K, is the following: increase the values of K
until RR exhibits slight variations; as soon as RR starts to
rapidly decrease for a certain value of K, select the previous
K value as the optimal one.

5.3. Behavior Analysis

Since our feature selection method does depend on any
specific classifiers, we want to evaluate both the generality
and the effectiveness of our results by using different clas-
sification algorithms. As a consequence, for each dataset,
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Figure 5: Recognition rate RR (top) and number of features NI (bottom) as a function of the constant K for MNIST dataset.

the best feature subset provided by the GA has been tested
by using different classifiers obtained varying the config-
uration parameters of the three considered classification
schemes (SVM, MLP and k–NN). The obtained perfor-
mances have been compared with those achieved by using
the whole feature sets.

The purpose of such a comparison is twofold: on the
one hand, we want to verify if the selected features allows
us to improve the performance with respect to those rel-
ative to all the available features. On the other hand, we
want to understand if the differences among the considered
classifiers actually depend on the selected features.

For each of the three algorithm, three different config-
uration parameter values have been considered, totaling
9 classifiers. More specifically, for the SVM three differ-
ent kernels have been used: Radial Basis Function (RBF),
Polynomial (with the degree set to three), and the sigmoid.
For the MLP, different classifiers have been obtained by
changing the number of neurons in the hidden layer. The
following values have been used: 50, 100 and 200. Finally,
for the k–NN, the following k values have been consid-
ered: 1, 3, 5. The performances of the 9 classifiers have
been compared by means of the 10-fold cross validation
method. The results are shown in Figure 7. The acronyms
SVM-R, SVM-P and SVM-S, stand for RBF SVM, Poly-
nomial SVM and sigmoidal SVM,respectively. As regards
the acronyms MLP-1, MLP-2 and MLP-3 they refer to the
MLPs with 50, 100 and 200 hidden neurons, respectively.
The acronyms of the k–NN are self-explanatory.

The figure shows that the feature subsets selected by
our method always give better results than those obtained
by using the whole set of features. Moreover, the trend of
the performance obtained by using of the selected feature
subsets is very similar to that of the whole feature set,

confirming the generality of the proposed feature selection
method.

5.4. Comparison Findings

In order to test the effectiveness of the proposed sys-
tem, our results have been compared with those obtained
by four widely used feature selection techniques. Such
techniques combines a search strategies and a subset evalu-
ation criterion. Moreover, the performance obtained using
the whole feature set has been also considered.

As regards the search strategies we used the Best First
(BF) [39] and the Linear Forward (LF) [40] ones. The
former strategy searches solutions by using a greedy hill–
climbing technique. It starts with the empty set of features
and adds new features according to the best first search
algorithm [41]. The latter one, instead, represents an ex-
tension of the Best First strategy. Such technique reduces
the number of attribute expansions in each forward selec-
tion step. It is faster than BF and it generally finds smaller
subsets. Our search strategy, based on the use of a GA,
exhibits an higher computational cost, since it requires a
number of operations equal to the number of individuals
in the population by the number of generations.

As subset evaluation criteria we have considered the
following ones: Feature–Class Correlation, Consistency Cri-
terion and three different wrapper evaluation functions.

The Feature–Class Correlation (FCC) [42] evaluates a
feature subset by measuring the correlation among its fea-
tures and the classes: it prefers subsets highly correlated
with classes, but having low correlation among features.
The Consistency Criterion (CC) [43] evaluates the worth
of the feature subsets by using a consistency index mea-
suring how well samples belonging to different classes are
separated. As concerns the wrapper functions we used the
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Table 2: Comparison results.

Cl.
MFEAT MNIST OPTODIGIT NIST
Acc. # Acc. # Acc. # Acc. #

All
SVM 96.77

649
91.13

489
97.55

64
56.05

132MLP 97.2 93.95 97 63.39
KNN 96.19 93.47 97.5 60.25

Our Method
SVM 97.69

233
92.94

272
98.61

44
66.16

61MLP 98.38 96.15 98 71.06
KNN 96.92 95.22 98.94 67.58

FCC-BF
SVM 97.08

133
91.76

144
97.55

35
62.1

64MLP 97.04 94.16 97.07 64.26
KNN 96.35 93.92 97.72 63.58

FCC-LF
SVM 97.15

106
88.36

58
97.55

35
62.21

57MLP 97.54 88.23 97.07 64.57
KNN 96.77 88.85 97.72 64.08

CC-BF
SVM 93.46

6
73.65

13
89.32

9
58.55

17MLP 91.92 68.09 83.81 64.39
KNN 93.08 70.23 87.54 62.25

CC-LF
SVM 93.92

6
77

20
90.43

9
58.95

14MLP 93.08 72.79 83.92 64.89
KNN 93.92 78.23 88.65 62.65

MLP-BF
SVM 96.92

25
91.57

65
96.67

33
59.24

48MLP 96.98 94.74 97.07 64.89
KNN 95.94 94 96.56 64.11

MLP-LF
SVM 97.19

14
91.68

43
96.85

26
58.48

41MLP 97.28 94.85 97.1 65.07
KNN 96.02 94.15 96.88 64.48

SVM-BF
SVM 96.94

29
91.76

68
97.47

35
61.2

46MLP 96.75 93.16 97.04 66.23
KNN 95.94 93.14 96.63 65.25

SVM-LF
SVM 97

13
91.83

47
97.67

30
61.4

40MLP 96.92 93.27 97.44 66.45
KNN 96.01 93.18 97.63 65.55

KNN-BF
SVM 95.57

31
91.7

71
97.14

39
58.48

59MLP 95.3 94.2 96.65 65.07
KNN 95.88 94.33 97.5 64.48

KNN-LF
SVM 95.57

17
91.85

41
97.6

32
58.68

48MLP 97.3 94.27 96.83 65.7
KNN 95.88 94.36 97.91 65.08

Avg diff. 1.7 5.6 3.1 5.48
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Figure 6: Recognition rate RR (top) and number of features NI (bottom) as a function of the constant K for NIST dataset.

same three classifiers used for the performance evaluation,
namely RBF SVM, a MLP with 200 hidden neurons and
the 3-NN.

The computational complexity of our evaluation func-
tion is lower than those exhibited by both FCC and CC. In
fact, we have used the training set data only for comput-
ing, once and forever, the within-class and the between-
class scatter matrices ΣW and ΣB. The other evaluation
functions, FCC and CC, on the contrary, compute the fea-
ture correlation and the consistency index, respectively,
for each subset to be evaluated. Finally, the computa-
tional complexity of the wrapper functions is the highest
one, since they require to perform, for each subset to be
evaluated, the training of the classifier and the evaluation
of the corresponding recognition rate.

The results are shown in Table 2. In the table, the
methods considered for the comparison are denoted by
acronyms. For each acronym the first part denotes the
evaluation function, while the second one the search strat-
egy. For instance, FCC-BF denotes a comparing method
using the Feature–Class Correlation as evaluation function
and the Best First search strategy.

Note that the accuracy results have been obtained by
using the 10–fold cross validation. For each dataset the
number of selected features are also reported. The last
row shows, for each dataset, the average values of the per-
formance differences between the proposed approach and
the methods taken into account for the comparison.

The data reported in the table shows that our ap-
proach achieves better results than those obtained by the
comparing methods. The last row of this table, reports
the mean values of such improvements, computed aver-
aging the differences between our method and the others
for each dataset. It can be seen that such improvements

varies from about 1.7% to 5.6%. As regards the number
of selected features, our approach selects more features
than the compared ones. This is due to the fact that we
chose the value of the constant K, which maximizes the
recognition rate even if larger values of K allowed a slight
performance reduction, but a considerable smaller number
of features.

In order to have a fair comparison with methods select-
ing small numbers of features, and to test the performance
of our system when as less as possible features should be
used, we performed a further set of experiments. More
specifically, for each dataset, we chose in the fitness func-
tion a value for the parameter K, such as to obtain a
number of features similar to that provided by the meth-
ods selecting the smallest number of features (CC–LF and
CC-BF). The results of this comparison are shown in Table
3. Also in this case, accuracy results have been obtained
by using the 10–fold cross validation.

The data in the table show that even when high values
of K are used (strong feature reduction), our method per-
forms almost always better than the other considered ones.
In particular, as concerns MFEAT and OPTODIGIT data-
sets, our approach selects the same number of feature, or
a slightly higher one, but achieves better results. The per-
formance increments vary from 1% (MFEAT, KNN classi-
fier) to 5% (OPTODIGIT, MLP classifier). As for MNIST
dataset, our method selects a number of features higher
than the that of CC–BF method (34 vs 13), but in this case
the performance improvements are more relevant, ranging
from 8.8% (SVM) to 16.1% (KNN). Finally, as regards the
NIST dataset, the results of our method are slightly worst
than those of CC–LF method (approximatively from 1%
to 2% less). It should be considered, however, that these
are the less favorable conditions for our method: in fact, as
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Figure 7: Behavior analysis.

the value of K grows, the second term in the fitness func-
tion becomes more and more relevant with respect to the
first one (see eq. 7), and the evolutionary algorithm tends
to favor solutions using a small number of features even
if they exhibit a low value of the separability index. This
behavior has been analyzed in subsection 5.2 discussing
the set of experiments for finding the optimal value of K.

6. Conclusions

In the framework of handwriting recognition problems,
we have presented a feature selection method for improving
classification performance. The devised approach uses a
GA–based feature selection algorithm for detecting feature
subsets where the samples belonging to different classes
are well discriminated. The proposed method does not re-
quire that the dimensionality of the searched subspace is
a priori fixed. Candidate feature subsets are evaluated by
means of a novel evaluation function based on the Fisher
linear discriminant. Such evaluation function uses covari-
ance matrices for estimating how the probability distri-
butions of patterns are spread out in the considered rep-
resentation space. Moreover, in order to balance the ef-
fects of the monotonic trend of the evaluation function,
a further term, suitable weighted, has been added which
takes into account the cardinality of the subspace to be
evaluated. The experiments have been performed by us-
ing four standard databases and the solutions found have
been tested with different classification methods. The re-
sults have been compared with those obtained by using the

whole feature set and with those obtained by using stan-
dard feature selection algorithms. The comparison out-
comes confirmed the effectiveness of our approach

From the experimental results we can also draw the
following observations:

1. The choice of an appropriate value for the constant
K is not critical. In fact, the trend of the recogni-
tion rate as a function of K is nearly constant for a
wide range of K values and, starting from a certain
point, it rapidly decreases. This behavior allows us
to easily identify an appropriate range of values for
K. More specifically, in application for which it is
mandatory to maximize performance, the value of K
corresponding to the highest recognition rate will be
chosen. On the contrary, if we can accept a slight
performance decrease, values of K corresponding to
a lower number of features may be chosen.

2. The accuracy gain obtained by our method with re-
spect to the compared methods justifies the compu-
tational time required by the feature selection algo-
rithm proposed.

3. The separability index assumes that class distribu-
tions are normal. Even if this assumption is diffi-
cult to verify for real data, it represents a reasonable
and a widely used approximation. Moreover, the re-
sults obtained on different datasets seems to prove
that this assumption does not negatively affect the
obtainable performance in handwriting recognition
applications.
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Table 3: Further comparison results.

Datasets Cl.
Our method Others
Acc. # Method Acc. #

MFEAT
SVM 95.0

6 CC-LF
93.92

6MLP 95.07 93.08
KNN 94.85 93.92

MNIST
SVM 82.5

34 CC-BF
73.65

13MLP 83.49 68.09
KNN 86.26 70.23

OPTODIGIT
SVM 92.82

12 CC-LF
90.43

9MLP 88.87 83.92
KNN 92.43 88.65

NIST
SVM 57.88

26 CC-LF
58.95

14MLP 62.57 64.89
KNN 61.45 62.65

Finally, it is worth noting that the proposed approach
also shows the following interesting properties: (i) it is
independent of the classification system used (ii) its com-
putational time is independent of the training set size.

The second property derive from the fact that we have
used the training set only for computing, once and for-
ever, the covariance matrices Σk (k = 1, . . . , C), the mean
vectors µ⃗k (k = 1, . . . , C) and the overall mean vector µ⃗0.
These information are needed for computing the within-
class and the between-class scatter matrices ΣW and ΣB.
This property is another consequence of the adopted filter
approach, which makes our method suitable when large
datasets are taken into account.
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