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Abstract. Graphs are powerful and versatile data structures, useful to
represent complex and structured information of interest in various fields
of science and engineering. We present a system, called EvoGeneS, based
on an evolutionary approach, for generating undirected graphs whose
number of nodes is not a priori known. The method is based on a special
data structure, called multilist, which encodes undirected attributed re-
lational graphs. Two novel crossover and mutation operators are defined
in order to evolve such structure. The developed system has been tested
on a wireless network configuration and the results compared with those
obtained by a genetic programming based approach recently proposed in
the literature.

1 Introduction

Graphs are powerful and versatile data structures, useful to represent complex
and structured information. In the last decades, there has been an increasing
interest in studying and using graphs in many applications, also because the
developments of computer technology made high computational cost problems
to be dealt with.

Graphs have been used in various fields of science and engineering. They may
effectively represent physical networks, such as transportation systems, power
systems, and mobile communication infrastructures [1–3], but have been also
used to model less tangible interactions, as might occur in ecosystems, data-
bases or in the control flow of a computer program [1]. In fields like pattern
recognition and machine vision, the high representational power of graphs make



them very attractive and well-suited to model complex patterns in terms of
parts and their relations. Attributes of graph nodes and edges are often added
to incorporate further information, leading to a graph representation form gen-
erally called Attributed Relational Graph (ARG) [4]. Examples of successful
applications include shape analysis and 3-D object recognition [5, 6], character
recognition [7], classification of ideograms and symbols in document analysis and
technical drawing interpretation [8].

In many cases, a prominent problem is that of generating graphs exhibiting
some particular properties. The generation of prototypes in pattern recognition
problems, so as the generation of the optimal configuration of a physical net-
work are examples of such problem. Thus, the use of graph representations often
requires the definition of effective techniques for generating the graphs represent-
ing the desired solutions. To this purpose, two main different approaches can be
identified, depending on the nature of the problem: in case of applications in
which training samples are available, the graphs may be generated by exploiting
the information included in such a training set. In all the other cases the solution
is found by defining a function F able to measure the goodness of tentative so-
lutions in a given space: the graphs representing the solutions are generated by
finding all the absolute maxima of the function F . Combinatorial, heuristic and
inductive learning approaches have been used, among others, to generate graphs
[9]. Several attempts to generate graphs using evolutionary approaches have also
been done. Methods have been proposed in the fields of molecular design [10]
and electrical circuit design [11], using a direct encoding of the evolving graph.
It is worth noting that these methods define evolutionary operators tailored for
the considered problem. Indirect encoding of graphs in terms of bit strings [12]
or trees [13] has also been used. In the latter approach, for instance, a tree en-
codes the operations to be applied to a very simple starting graph, in order to
transform it into another one arbitrarily complex.

We present a system, called EvoGeneS (Evolutionary Graph Generation Sys-
tem), based on an evolutionary approach, for generating graphs whose number of
nodes is not a priori known. The proposed method aims at overcoming two major
disadvantages of the methods discussed earlier by providing a direct encoding of
graphs and two novel, general purpose and problem independent operators. A
special structure, called multilist, encodes undirected ARG’s, and demonstrated
to be particularly convenient for generating new and different graphs under given
constraints. For evolving multilists, two basic operators have been devised: the
first one, called crossover by analogy to genetic algorithms, swaps parts of two
multilists, thus swaps subgraphs of two graphs, thus generating graphs of vari-
able length. The second operator, called mutation, operates on a multilist in
such a way to change a graph into a new one whose node number is unchanged,
whereas both node and link attributes can be modified.

In the following, after defining the multilist and the elementary operations
defined for it, an application of the proposed evolutionary system will be il-
lustrated. The results obtained by EvoGeneS will be compared with those of



EvoGraph, the approach described in [13], showing that EvoGeneS performance
overcomes that of this Genetic Programming based approach.

2 EvoGeneS

EvoGeneS is essentially based on two elements: a new data structure encoding
undirected relational graphs with attributes and two operators devised for such
structure.

2.1 Graph Encoding

Let us consider a graph G of N nodes. Let also denote by An and Aa the
sets of values for the attributes describing the nodes and the arcs of the graph,
respectively. The data structure we have adopted for representing attributed
relational graphs has been called multilist (ML in the following) since it is based
on the list concept and consists of two basic lists. The first one, called main list,
contains the information on graph node attributes, thus its number of elements
is equal to the number N of nodes. Each element of the second list is on its turn
a list, called sublist. One sublist is associated with each node and includes the
attributes of the arcs connected to that node. In order to preserve information
about the nodes interconnected by each arc, arc attributes are sorted in each
sublist in a suitable order. Namely, the i-th sublist contains information on the
arcs connecting the i-th node of the graph to the nodes following it in the main
list, in the order they appear in such list. If two nodes are not connected, this
information is anyway suitably stored in the proper place of a sublist. In practice,
a ”null” relation has been defined so that even the absent arcs are encoded in the
ML representation of a graph (see Fig. 1). The length of a ML is defined as the
number of elements of its main list. It is important to notice that, in this paper,
we consider simple (i.e., without loops) undirected graphs, so that the relation
linking the i-th node to the j-th node coincides with the relation linking the j-th
node to the i-th node. For this reason, the length of the sublist associated with
a node decreases as the position of the node in the main list increases: the first
sublist is made of N − 1 elements, the second sublist has N − 2 elements and so
on. In fact, the information on the link between each node and the previous ones
in the main list is already expressed in the previous sublists. As a consequence,
the sublist of the last node of the graph is void. Thus a ML has a triangular
shape: the base of the triangle is the main list and is long N , while the height is
represented by the first sublist and is long N−1. In the following, the operations
defined on the ML’s will be introduced.

2.2 The Operators

The just described data structure has been devised in such a way to make eas-
ier the application of operators able to generate new and different items from
previously generated ones. Two basic operators have been defined for the ML:
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Fig. 1. Two graphs (top) and their encoding multilists (bottom). The horizontal list
is the main one and the vertical lists are the sublists. The elements of the set An are
denoted by capital letters, while those of Aa are denoted by small letters. The null
element is denoted by the letter ’o’.

they have been called crossover and mutation by analogy to genetic algorithm
operators. The former operator swaps parts of two ML’s. In this way, it is possi-
ble to generate better solutions by combining solutions that contain only part of
a good solution. The mutation operator, instead, generates a new graph whose
number of nodes is unchanged, whereas the attributes of both nodes and arcs
can be modified.

Crossover Operator The crossover is applied to two ML’s, L
′

and L
′′

, called in
the following parents, respectively encoding the graphs G

′

and G
′′

, and generates
two new ML’s, M

′

and M
′′

, called offspring, respectively encoding the graphs
H

′

and H
′′

. The crossover operator allows generating ML’s of variable length.
In fact, if the parents are of length N

′

and N
′′

respectively, the length of the
offspring may varies in the interval [2, (N

′

+ N
′′

)− 2]. The operator is obtained
by combining two more elementary operations that can be applied to a ML. The
former, called t-cut, splits a generic ML L of length N in two ML’s, the first one
consisting of the first t nodes of L and the second one of the remaining N − t
nodes. The latter operation, instead, is called merge and, given two ML’s L

′

, of
length N

′

, and L
′′

, of length N
′′

, yields a new ML of length (N
′

+ N
′′

), encoding a
graph including both the nodes of G

′

and G
′′

. To show how the crossover works,
let L

′

be the ML of Fig. 1(a) (N
′

= 4) and L
′′

that of Fig. 1(b) (N
′′

= 5).
Then, to apply the crossover to these ML’s, two integers t1 ∈ [1, N

′

− 1] and
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Fig. 2. The crossover operator. (a) and (b) the application of the t-cut to the multilists
of Fig. 1. (c) and (d) The offspring obtained after the merge. (e) and (f) The resulting
graphs.

t2 ∈ [1, N
′′

− 1] have to be randomly chosen. Let t1 = 2 and t2 = 1, then the
2-cut operation is applied to L

′

and two ML’s are obtained: L
′

1 and L
′

2, both
of length 2 (see Fig. 2(a)). Afterwards, the 1-cut operation is applied to L

′′

,
which yields two ML’s: L

′′

1 of length 1 and L
′′

2 of length 4 (see Fig. 2(b)). At this
point, the merge operation is applied to L

′

1 and L
′′

2 : it yields a ML of length 6,
which represents our first offspring (see Fig. 2(c)). The merge operation has to
be applied also to the remaining ML’s, L

′

2 and L
′′

1 . In this case a ML of length
3 is obtained, which represents the second offspring (Fig. 2(d)). The obtained
graphs are shown in Figures 2(e) and 2(f). Note that the length of the offspring
depends on the values chosen for t1 and t2.

Mutation Operator The mutation operator defined here, actually gives place
to a sort of micro-mutation, because it does not modify the structure of the
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Fig. 3. The multilist (left) and the corresponding graph (right), derived from the ap-
plication of the mutation operator, with a probability equal to 0.1, to the multilist of
Fig. 1(b). The mutation modifies the attribute of node 3 and that associated with the
arc which links nodes 3 and 5. Moreover, the mutation added a new arc, which links
nodes 1 and 3, absent in the graph before of the application of the mutation operator.

ML to which it is applied, but only the values of the elements of the main list
and of the sublists. Such an operation is based on a probability value, called
mutation probability (pm in the following). For each element in the main list,
pm represents the probability to replace its value with another one randomly
chosen from the set An. The same occurs for the elements of the sublists, but
in this case the value can be replaced either by one belonging to the set Aa or
by the null value. Let L be a generic ML and L

′

be the ML produced by the
application of the mutation operator to L. Let us examine the possible differences
between the graphs encoded by L and L

′

. Both graphs contain the same number
of nodes, while the number of arcs of the two graphs may be different. In fact,
when the mutation is applied to an element of the main list it changes only the
attributes of that node leaving the number of nodes unchanged. Instead, when
the mutation is applied to an element of a sublist, and either a null element
is changed to a not null one or vice versa, the corresponding arc is added to
or removed from the original graph, respectively. Finally, if a not null element
is replaced by a different not null element, then both the graphs G and G

′

will
contain the arc represented by that element, but the relation associated with the
arc in G is different from that in G

′

(see Fig. 3). We should note that, generally,
the differences between the graphs G and G

′

are directly proportional to the
mutation probability pm.

2.3 The Algorithm

The evolutionary algorithm implemented in EvoGeneS starts by generating at
random a population of P individuals. Each individual is a ML encoding a
graph representing a solution of the problem to be solved. The length of these
initial individuals range from 2 to Nmax nodes. Afterwards, the fitness of the
individuals generated is evaluated. To generate a new population, first the best E
individuals are selected and copied in the new population in order to implement
an elitist strategy. Then (P − E)/2 couples of individuals are selected using
the tournament method, to control loss of diversity and selection intensity. The



crossover operator is applied to each of the selected couples, according to a chosen
probability factor pc. Afterwards, the mutation is applied to the individuals
according to a probability factor pm. Finally these individuals are added to the
new population. The process just described is repeated for Ng generations.

3 Testing the approach

In order to ascertain the effectiveness of the proposed approach, we have cho-
sen a planning and optimization problem. To cope with this kind of problems,
several approaches have been proposed in the literature, including genetic pro-
gramming [13], simplex method [14], simulated annealing [15], Tabu search [16]
and genetic algorithms [17]. In particular in [13], the wireless access point config-
uration problem, a hard non-linear optimization problem, has been considered.
We have chosen the same problem, in order to compare our results with those
presented in [13].

The scenario of the problem is the following: a community is planning to
provide wireless Internet service to its citizens (clients) who are scattered around
a given area. A certain number of access points need to be placed to cover all
clients, because each access point has a limited service radius. All access points
are wired and one of them is connected to an Internet gateway. The design
problem consists in determining the optimal configuration of the AP’s in the area
to cover. To reduce the cost, a configuration with minimal number of AP’s and
minimum length of the wires connecting them is considered optimal. According
to the constraints imposed, the wireless access point configuration problem can
be formulated in different ways. E.g., [18] assumes that the AP’s are located at
a specified set of possible points. We assume that the AP’s can be located at
any place. More precisely, the problem to solve is defined as follows:
GIVEN a set of NC clients located at (xc

i , y
c
i ) i = 1 . . .NC in an area of size

W ×H where xc
i ∈ [0, W ] and yc

i ∈ [0, H ], and the gateway G located at (xg , yg),
let us assume that all AP’s are equal and that the service radius of an AP is rs;
FIND a configuration of wired access points located at (xAP

i , yAP
i ) with i =

1 . . .NAP , connected to the gateway port G in such a way that each client is
covered by at least one AP and the total cost of the AP’s and the wires is
minimal. Thus, let CAP be the cost of each AP and Cw the cost of a unit length
wire, the aim is:
minimize f = CAP ∗ NAP + Cw ∗

∑
|Li|

where the Li are the lengths of the connections among AP’s.

A more precise solution of the problem would require considering some pa-
rameters of an AP like transmission power, channel allocation and antenna di-
rectionality. In this paper, such parameters are not considered. Nevertheless, the
proposed formulation keeps the essentials of the wireless configuration problem,
avoiding a time-consuming simulation for evaluating the fitness of a configura-
tion.



Created with aiSee V2.0 (ERP-Version) (c) 2000 AbsInt Angewandte Informatik GmbH. Commercial use prohibited!

 Wireless Access Point 
Configuration Problem

 A: Access Points
 C: Clients
 G: Gateway

Rs:    AP service radius

 G C C
C

C

C
C

C

C C

C

A1 (120,195)

A2 (179,311)

A3  (280,150)

A4 (380,271)

A5 (555,310)

A6 (650,166)

<Rs

0

A1 A A A A A2 3 4 5 6

280, 150179, 311 380, 271 555, 310 650, 166120, 195

1

1

0

0

0

0

0

0

0

0

1 1 1 1

0

0

0

0

Fig. 4. An instance of the wireless access point configuration problem (left) and the
multilist encoding it (right). The citizens (clients) are labeled as circled C, while the
access point are represented by squares.

The Fitness Function To solve the problem, a configuration of AP’s is rep-
resented with a graph whose nodes are the AP’s and whose arcs are the wire
segments connecting the AP’s. The set of node attributes is made up of the AP
coordinates in the area to cover (see Fig. 4). In the problem at hand, it is nec-
essary to know only which nodes are linked to a given node. Hence, in the ML
representation encoding the graph, the value 1 is used to indicate the presence
of an arc, while the 0 indicates the absence of an arc.

As mentioned in the previous section the fitness function has to consider three
aspects of the problem: the percentage of covered clients, the number of AP’s
employed and the total length of the wires connecting them. For this reason, the
fitness function is the weighted sum of three terms. The first term Fcover should
measure how well the clients are covered by the configuration of AP’s: the more
clients are covered, the better. The second term Fwires should measure how good
the connection topology is: the shorter the wires used, the better. Finally, the
term FAP should estimate the goodness of a configuration as regards the number
of wireless AP’s employed: now, the fewer AP’s are used, the better. It may be
convenient that the fitness terms are normalized and suitably weighted, so as to
reflect their different importance for evaluating the goodness of a configuration.
Since the aim of this paper is that of presenting a general purpose method for
graph generation, for the specific problem considered we have adopted the same
fitness function as proposed in [13], in order to ascribe any difference in the
performance of the methods to the way the solutions are generated, not to the
way they are evaluated. Namely, the fitness terms are:

Fcover =
4.0 ∗ Cc

Cc + CT

; Fwires =
10000

10000 + Lw

; FAP =
CT

CT + 1.5 ∗ NAP

(1)

where Cc is the number of clients covered, CT the total number of clients, NAP

the number of AP’s and Lw is the total length of wire segments connecting the
AP’s. Then, the fitness function Ftot is the weighted sum of the above three
terms:

Ftot = 0.7 ∗ Fcover + 0.1 ∗ Fwires + 0.2 ∗ FAP (2)



Moreover, solutions (i.e., configurations) containing isolated AP’s are penal-
ized by multiplying their fitness by 0.5.

4 Experimental Results

By analogy with the experimental framework presented in [13], we have consid-
ered a search space whose length and width are both equal to 1000, and we have
assumed, for the sake of simplicity, that the clients are represented in this space
by points having integer coordinates. The values of the evolutionary parameters
have been experimentally determined and are summarized in Table 1.

In the experiments reported below, the number of clients has been varied
starting from 25 up to 50 with increments equal to 5. For each considered value,
a distribution of clients has been randomly generated, and 50 runs have been
performed with different initialization of the population, so as to reduce the
effects of randomness embedded in the evolutionary algorithms. At the end of
each run, the best solution found by the algorithm is stored. The corresponding
length of the wires connecting the AP’s is computed and stored as well. For
each distribution of clients, we have computed the mean NAP and the standard
deviation σNAP

of the number of AP’s found by our method while performing 50
runs (see Fig. 5(a)). The mean L and the standard deviation σL of the lengths
of the wires have been computed as well (see Fig. 5(b)).

In order to highlight the effectiveness of the obtained results, for each solution
provided by our method, we have separately computed the Minimum Spanning
Tree (MST) [1] of the corresponding graph. In fact, the MST represents the
connection topology with minimal wire cost, thus we have compared the length
of the wires relative to the MST with that of our solution. In practice, for the
sake of comparison, we have computed the mean L′ of the wire lengths for each
distribution of clients. Each length refers to one of the 50 runs and is obtained
by using the MST over the set of AP’s provided by our method for that run.
The plot of L′ as a function of the number of clients, is shown in Fig. 5(b). The
results are very encouraging because in every run a complete coverage of the
clients has been obtained and the wire costs are very close to those computed
on the MST. Moreover, the number of AP’s needed to solve the problem, as well

Table 1. Values of the basic evolutionary parameters used in the experiments.

Parameter symbol value

Population size P 1000
Tournament size T 60
elitism size E 40
Crossover probability pc 0.3
Mutation probability pm 0.04
Number of Generations Ng 500
Maximum number of nodes Nmax 50
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Fig. 5. (a) The mean number of access points and its standard deviation as a function
of the number of clients are respectively represented by bars and segments on top of
the bars. (b) The mean of the wire lengths and its standard deviation as a function of
the number of clients, computed by our method and by using the MST for finding the
connection topology.

as the lengths of their connections, slightly increase with the number of clients.
Finally, the standard deviations of both the number of AP’s and the wire lengths
assume small values, thus indicating that the solutions are widely independent of
the initial conditions. Note that, for each distribution of clients, the evolutionary
algorithm converges to solutions having almost the same number of AP’s and
the same wire cost.

Fig. 6 illustrates some results of one of the experiments performed by using
a randomly generated distribution of 40 clients. In particular, the best solutions
obtained at generation 10, 100, 300 and 500 are shown. During the initial gener-
ations, the evolutionary process tends to improve the client covering by adding
more and more AP’s, without optimizing the connection topology. Only after
an almost complete coverage has been obtained, the system tries to reduce the
number of AP’s and focuses the search on optimizing the connection topology.
This behavior can be explained considering that the term Fcover in the fitness
function has the highest weight, while the term Fwires the lowest. For instance,
at generation 10, all clients but one are covered using 23 AP’s, but the connec-
tion topology is messy. At generation 100, all the clients are covered with 21
AP’s and the connection topology is significantly improved. At generation 300
the total coverage is obtained with 20 clients and the connection topology is
nearly optimal. At generation 500, finally, 19 AP’s are used and the topology
connection is optimal (i.e., it coincides with the MST of the related graph).

In comparing the results obtained by EvoGeneS with those reported in [13]
it is worth noting that our system perform a global optimization in that both
the number of AP’s and their connections are simultaneously exploited for com-
puting the fitness function. On the contrary, the genetic programming based
method, is able to find a solution only when a sequential approach is adopted:
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Fig. 6. The best solutions obtained at generation 10, 100, 300, 500, relative to an
experiment with 40 clients. Black circles represent the clients covered by at least one
access point, while white circles represent uncovered clients. The access points are
represented by white squares.

first, solving the coverage problem by GP and then using a MST algorithm for
determining the connection topology. Thus, it succeeds only when problem spe-
cific knowledge can be exploited to reformulate the original global optimization
problem as a sequence of partial optimization problems.

5 Conclusion

We have presented a system, called EvoGeneS, based on an evolutionary ap-
proach, for generating undirected graphs whose number of nodes is not a priori
known. The proposed approach solves two key problems encountered when using
genetic algorithms for evolving graphs: it provides a suitable data structure for
the direct representation of graphs and defines crossover and mutation operators
for manipulating graphs with a variable number of nodes, i.e. representations of
variable length.



The results obtained by EvoGeneS on a wireless access point network config-
uration problem show a significant improvement with respect to those reported
in the literature. Moreover, the approach does not rely on any problem specific
knowledge and therefore it is suitable to deal with any problem whose solutions
can be represented by graphs.
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