

Alternating Sequence of CPU And I/O Bursts

.

load store

add store

read from file CPU burst
il for [0 10 burst

store increment

index GPU burst

write 1o file
wait for 'O } 170 burst

load store

add store

read from file CPU burst
wait for 'O 10 burst

o
w

Operating System Concepts Silberschatz, Galvin and Gagne ©2002

Histogram of CPU-burst Times

!

T -
i & 18 24 a2 a0

hurst duratian (mbliseoonds)

Operating System Concepts 6.4 Silberschatz, Galvin and Gagne ©2002

CPU Scheduler

Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.
CPU scheduling decisions may take place when a
process:

1. Switches from running to waiting state.

2. Switches from running to ready state.

3. Switches from waiting to ready.

4. Terminates.

Scheduling under 1 and 4 is nonpreemptive.
All other scheduling is preemptive.

9 .
Operating System Concepts 6.5 Silberschatz, Galvin and Gagne ©2002 &@&
-

Dispatcher

B Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:

switching context

switching to user mode

jumping to the proper location in the user program to restart
that program

® Dispatch latency — time it takes for the dispatcher to stop
one process and start another running.

Operating System Concepts 6.6 Silberschatz, Galvin and Gagne ©2002 &9&

Scheduling Criteria

m CPU utilization — keep the CPU as busy as possible

B Throughput — # of processes that complete their
execution per time unit

B Turnaround time — amount of time to execute a particular
process

B Waiting time — amount of time a process has been waiting
in the ready queue

B Response time — amount of time it takes from when a
request was submitted until the first response is
produced, not output (for time-sharing environment)

9 .
Operating System Concepts 6.7 Silberschatz, Galvin and Gagne ©2002 &@&
-

Optimization Criteria

Max CPU utilization
Max throughput

Min turnaround time
Min waiting time
Min response time

Operating System Concepts 6.8 Silberschatz, Galvin and Gagne ©2002 &9&

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P 24
P 3

B Suppose that the processes arrive in the order: P, , P, , P53
The Gantt Chart for the schedule is:

Py P, Ps

0 24 27 30

B Waiting time for P, =0; P, = 24; P;= 27
B Average waiting time: (0 + 24 + 27)/3 = 17

9 .
Operating System Concepts 6.9 Silberschatz, Galvin and Gagne ©2002 &@&
-

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
P2 3y P3 3 Pl .
B The Gantt chart for the schedule is:

P, Ps P,

0 g 6 30

Waiting time for P; = 6;P,= 0.P3=3

Average waiting time: (6 + 0 + 3)/3 =3

Much better than previous case.

Convoy effect short process behind long process

Operating System Concepts 6.10 Silberschatz, Galvin and Gagne ©2002 &9&

~ Shortest-Job-First (SJR) Scheduling

B Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time.

H Two schemes:

nonpreemptive — once CPU given to the process it cannot
be preempted until completes its CPU burst.

preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

m SJF is optimal — gives minimum average waiting time for
a given set of processes.

9 .
Operating System Concepts 6.11 Silberschatz, Galvin and Gagne ©2002 &@&
-

Example of Non-Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P 4.0 1
P, 5.0 4
m SJF (non-preemptive)
P, P, P, P,
———+—+ 1+
0 8 /7 8 12 16

B Average waitingtime=(0+6 +3 +7)/4 -4

9 .
Operating System Concepts 6.12 Silberschatz, Galvin and Gagne ©2002 &é&
-

Example of Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
Ps 4.0 1
P, 5.0 4

B SJF (preemptive)

P, | P, |Ps | P, P, P,

I I i 1

0 2 4 5 7 11 16

B Average waiting time = (9 + 1 + 0 +2)/4 - 3

9 .
Operating System Concepts 6.13 Silberschatz, Galvin and Gagne ©2002 &@&
-

- Determining Length of Next CPU Burst

B Can only estimate the length.

B Can be done by using the length of previous CPU bursts,
using exponential averaging.

. t, =actuallenghtof n"""CPUburst

t ., = predictedvalue for the next CPUburst
.a,0£a £1
. Define:

tn+1:atn+(1' a)n'

AW NP

9 .
Operating System Concepts 6.14 Silberschatz, Galvin and Gagne ©2002 &é&
-

rediction of the Length of the Next CPU Burst

12 =
T 10 \ |
—a 1
! &
4
2 r
i
CPL burst L} <] 4] 4 13 13 13
"guess” {t) 10 B L]] B 9 11 12
Operating System Concepts 6.15 Silberschatz, Galvin and Gagne ©2002 é@&

Examples of Exponential Averaging

m a=0
tn+1: tn
Recent history does not count.
m a=1
tn+l = tn
Only the actual last CPU burst counts.
m |f we expand the formula, we get:
tim=att(@d-a)at,-1+ ...
+(1-a)at,-1+..
+(1 -a)n:ltntO
B Since both a and (1 - a) are less than or equal to 1, each
successive term has less weight than its predecessor.

Operating System Concepts 6.16 Silberschatz, Galvin and Gagne ©2002 &$&

Priority Scheduling

B A priority number (integer) is associated with each
process

® The CPU is allocated to the process with the highest
priority (smallest integer ° highest priority).
Preemptive
nonpreemptive
B SJF is a priority scheduling where priority is the predicted
next CPU burst time.
B Problem °© Starvation — low priority processes may never
execute.

B Solution © Aging — as time progresses increase the
priority of the process.

9 .
Operating System Concepts 6.17 Silberschatz, Galvin and Gagne ©2002 &@&
-

Round Robin (RR)

B Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

m [f there are n processes in the ready queue and the time
guantum is g, then each process gets 1/n of the CPU time
in chunks of at most g time units at once. No process
waits more than (n-1)q time units.

m Performance

g large b FIFO

g small b g must be large with respect to context switch,
otherwise overhead is too high.

9 .
Operating System Concepts 6.18 Silberschatz, Galvin and Gagne ©2002 &é&
-

‘Example of RR with Time Quantum = 20

Process Burst Time
2 53
P, 17
P, 68
P, 24

Po| Py |Ps| P PP | PP | Py Py

0 20 37 57 77 97 117 121 134 154 162

B Typically, higher average turnaround than SJF, but better
response. :

9 .
Operating System Concepts 6.19 Silberschatz, Galvin and Gagne ©2002 &@&
-

Time Quantum and Context Switch Time

process lime = 10 Guantum context
switches
| | 12 o
0 10
L 1

(=]
=]

=
-
ha
w
=
m
o™
-~
m
-]
=

Operating System Concepts 6.20 Silberschatz, Galvin and Gagne ©2002 &9&

Turnaround Time Varies With The Time Quantum

PrOGEsSS fima

TR T

e B -

EVEFENE frnanund time

1 d 3 4 3 a [
Hime guaham

9 .
Operating System Concepts 6.21 Silberschatz, Galvin and Gagne ©2002 é/?&
-

Multilevel Queue

B Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)
B Each queue has its own scheduling algorithm,
foreground — RR
background — FCFS
B Scheduling must be done between the queues.
Fixed priority scheduling; (i.e., serve all from foreground
then from background). Possibility of starvation.

Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR

20% to background in FCFS

Operating System Concepts 6.22 Silberschatz, Galvin and Gagne ©2002 &$&

Multilevel Queue Scheduling

Jrighssat priceiy

:—i shudan processes |:—-

kwwagd ity

Operating System Concepts 6.23 Silberschatz, Galvin and Gagne ©2002

Multilevel Feedback Queue

B A process can move between the various queues; aging
can be implemented this way.
m Multilevel-feedback-queue scheduler defined by the
following parameters:
- number of queues
~ scheduling algorithms for each queue
~ method used to determine when to upgrade a process
- method used to determine when to demote a process

~ method used to determine which queue a process will enter
when that process needs service

Operating System Concepts 6.24 Silberschatz, Galvin and Gagne ©2002

- Example of Multilevel Feedback Queue

B Three queues:
Q, — time quantum 8 milliseconds
Q, — time quantum 16 milliseconds
Q,- FCFS

B Scheduling

A new job enters queue Q, which is served FCFS. When it
gains CPU, job receives 8 milliseconds. If it does not finish
in 8 milliseconds, job is moved to queue Q.

At Q, job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted
and moved to queue Q..

9 .
Operating System Concepts 6.25 Silberschatz, Galvin and Gagne ©2002 é/?&
-

Multilevel Feedback Queues

AN 2000

= quantum = 8 v—
- quantum = 16 %
FCFS E

Operating System Concepts 6.26 Silberschatz, Galvin and Gagne ©2002 &$&

v

L

process made
available

—— dispatch latancy —————m

-Evaluation of CPU Schedulers by Simulation

perfarmance
simulation =p statistics
for FCFS
FCFS
CPL 10
o 213
actual CPU 12 performance
Process w110 112 simulation mjp- statistics
axecution CPU 2 for SJF
10 147 sIF
CPU1T3
frace tape
parformance
simulafion mjp- statistics
for AR(Q = 14)
BR[O =14)

Operating System Concepts 6.31 Silberschatz, Galvin and Gagne ©2002
chckl achaduling seFadiler P
jpricrily ardar LT quine
highask lirsi Tl tme R

¥ F Q._. Ihreads of reak
ime LWPs
Q-
EyEiem 4B
Ereion
@— =
*
imeracive and AT
tme: sharing 0_ . Wil ol
ripmadiee amd
tirre-sFaring
L'WPs
Qr
L L
el last
Operating System Concepts 6.32 Silberschatz, Galvin and Gagne ©2002

] =

. -—

