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Background

B Concurrent access to shared data may result in data
inconsistency.

B Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes.

B Shared-memory solution to bounded-buffer problem
(Chapter 4) allows at most n — 1 items in buffer at the
same time. A solution, where all N buffers are used is not
simple.

Suppose that we modify the producer-consumer code by

adding a variable counter, initialized to 0 and incremented
each time a new item is added to the buffer
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Bounded Buffer

B Assume counter is initially 5. One interleaving of
statements is:

producer: registerl = counter (registerl = 5)
producer: registerl = registerl + 1 (registerl = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 =register2 — 1 (register2 = 4)
producer: counter = registerl (counter = 6)
consumer: counter = register2 (counter = 4)

B The value of count may be either 4 or 6, where the
correct result should be 5.
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Race Condition

B Race condition: The situation where several processes
access — and manipulate shared data concurrently. The
final value of the shared data depends upon which
process finishes last.

B To prevent race conditions, concurrent processes must
be synchronized.
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The Critical-Section Problem

B n processes all competing to use some shared data

B Each process has a code segment, called critical section,
in which the shared data is accessed.

B Problem — ensure that when one process is executing in
its critical section, no other process is allowed to execute
in its critical section.
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Solution to Critical-Section Problem

1. Mutual Exclusion. If process P;is executing in its critical
section, then no other processes can be executing in their
critical sections.

2. Progress. If no process is executing in its critical section
and there exist some processes that wish to enter their
critical section, then the selection of the processes that
will enter the critical section next cannot be postponed
indefinitely.

3. Bounded Waiting. A bound must exist on the number of
times that other processes are allowed to enter their
critical sections after a process has made a request to
enter its critical section and before that request is
granted.

® Assume that each process executes at a nonzero speed

® No assumption concerning relative speed of then
processes.
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Bakery Algorithm

Critical section for n processes

m Before entering its critical section, process receives a
number. Holder of the smallest number enters the critical

section.
m |f processes P; and P; receive the same number, if i <,
then P; is served first; else P; is served first.

B The numbering scheme always generates numbers in
increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...
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Bakery Algorithm

B Notation <° lexicographical order (ticket #, process id #)
(ab)<cd)ifa<corifa=candb <d
max (ay,..., &,4) is @ number, k, such thatk 2 & fori- 0,
,n=1
B Shared data
boolean choosing[n];
int number[n];
Data structures are initialized to false and O respectively
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Deadlock and Starvation

B Deadlock — two or more processes are waiting indefinitely for
an event that can be caused by only one of the waiting

processes.
B et S and Q be two semaphores initialized to 1
= =2
wait(S); wait(Q);
wait(Q); wait(S);
signal (S); signal(Q);
signal (Q) signal(S);

B Starvation — indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.
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Two Types of Semaphores

m Counting semaphore — integer value can range over
an unrestricted domain.

B Binary semaphore — integer value can range only
between 0 and 1; can be simpler to implement.

m Can implement a counting semaphore S as a binary
semaphore.
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Implementation region x when Bdo S

B Associate with the shared variable x, the following
variables:

semaphore mutex, first-delay, second-delay;
int first-count, second-count;

m Mutually exclusive access to the critical section is
provided by mutex.

m [f a process cannot enter the critical section because the
Boolean expression B is false, it initially waits on the first-
delay semaphore; moved to the second-delay
semaphore before it is allowed to reevaluate B.
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Implementation

m Keep track of the number of processes waiting on first-
delay and second-delay, with first-count and second-
count respectively.

B The algorithm assumes a FIFO ordering in the queuing of
processes for a semaphore.

B For an arbitrary queuing discipline, a more complicated
implementation is required.
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Monitors

m High-evel synchronization construct that allows the safe sharing
of an abstract data type among concurrent processes.

monitor monitor-name

{

shared variable declarations
procedure body P1 (...) {

}
procedure body P2 (...){

}
procedure body Pn (...){

}
{

} AN
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initialization code

Monitors

B To allow a process to wait within the monitor, a
condition variable must be declared, as
condition X, y;
m Condition variable can only be used with the
operations wait and signal.
The operation
x.wait();
means that the process invoking this operation is
suspended until another process invokes
x.signal();
The x.signal operation resumes exactly one suspended
process. If no process is suspended, then the signal
operation has no effect.
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K Schematic View of a Monitor
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Monitor Implementation

B Conditional-wait construct: x.wait(c);
¢ — integer expression evaluated when the wait operation is
executed.
value of ¢ (a priority number) stored with the name of the
process that is suspended.
when x.signal is executed, process with smallest
associated priority number is resumed next.

m Check two conditions to establish correctness of system:

User processes must always make their calls on the monitor
in a correct sequence.
Must ensure that an uncooperative process does not ignore
the mutual-exclusion gateway provided by the monitor, and
try to access the shared resource directly, without using the
access protocaols.
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Solaris 2 Synchronization

B |Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing.

B Uses adaptive mutexes for efficiency when protecting
data from short code segments.

m Uses condition variables and readers-writers locks when
longer sections of code need access to data.

B Uses turnstiles to order the list of threads waiting to
acquire either an adaptive mutex or reader-writer lock.
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Windows 2000 Synchronization
Uses interrupt masks to protect access to global
resources on uniprocessor systems.

Uses spinlocks on multiprocessor systems.

Also provides dispatcher objects which may act as wither
mutexes and semaphores.

Dispatcher objects may also provide events. An event
acts much like a condition variable.
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Transazioni

Particolarmente importanti nelle basi di dati

Sistema operativo come sistema per la manipolazione di
dati

Transazione: insieme di istruzioni (operazioni) che
esegue una singola funzione logica

Per i nostri scopi consideriamo una transazione come
sequenza di read e write terminate da un’operazione di
commit o di abort.

Necessita di riavvolgere il nastro: roll-back
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