Chapter 8: Deadlocks

System Model

Deadlock Characterization

Methods for Handling Deadlocks
Deadlock Prevention

Deadlock Avoidance

Deadlock Detection

Recovery from Deadlock

Combined Approach to Deadlock Handling

9 .
Operating System Concepts 8.1 Silberschatz, Galvin and Gagne ©2002 &@&
-

The Deadlock Problem

m A set of blocked processes each holding a resource and
waiting to acquire a resource held by another process in
the set.

® Example

System has 2 tape drives.

P, and P, each hold one tape drive and each needs another
one.

m Example
semaphores A and B, initialized to 1

PO Pl
wait (A); wait(B)
wait (B); wait(A)

Operating System Concepts 8.2 Silberschatz, Galvin and Gagne ©2002 &9&




Bridge Crossing Example

m Traffic only in one direction.
B Each section of a bridge can be viewed as a resource.

B |[f a deadlock occurs, it can be resolved if one car backs
up (preempt resources and rollback).

B Several cars may have to be backed up if a deadlock
occurs.

B Starvation is possible.

9 .
Operating System Concepts 8.3 Silberschatz, Galvin and Gagne ©2002 &@&
-

System Model

B Resource types R, R,, . . ., Ry,
CPU cycles, memory space, I/O devices
B Each resource type R; has W, instances.
B Each process utilizes a resource as follows:
request
use
release

Operating System Concepts 8.4 Silberschatz, Galvin and Gagne ©2002 &9&




Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

B Mutual exclusion: only one process at a time can use a
resource.

B Hold and wait: a process holding at least one resource
is waiting to acquire additional resources held by other
processes.

® No preemption: a resource can be released only
voluntarily by the process holding it, after that process
has completed its task.

m Circular wait: there exists a set {Pg, P4, ..., P,} of waiting
processes such that P is waiting for a resource that is
held by P,, P, is waiting for a resource that is held by
P,, ..., P, is waiting for a resource that is held by
P, and P, is waiting for a resource that is held by P,,.

9 .
Operating System Concepts 8.5 Silberschatz, Galvin and Gagne ©2002 &@&
-

Resource-Allocation Graph

A set of vertices V and a set of edges E.

B V is partitioned into two types:

P ={P,, P,, ..., P}, the set consisting of all the processes in
the system.

R={R,R,, ..., R}, the set consisting of all resource types
in the system.

B request edge — directed edge P; ® R
m assignment edge — directed edge R; ® P;

9 .
Operating System Concepts 8.6 Silberschatz, Galvin and Gagne ©2002 &é&
-







xl'\’esource Allocation Graph With A Deadlock

9 .
Operating System Concepts 8.9 Silberschatz, Galvin and Gagne ©2002 é@&
-

mesource Allocation Graph With A Cycle But No Deadlock

\\w:f@

A

Operating System Concepts 8.10 Silberschatz, Galvin and Gagne ©2002 &$&







Deadlock Prevention

Restrain the ways request can be made.

B Mutual Exclusion — not required for sharable resources;
must hold for nonsharable resources.

B Hold and Wait — must guarantee that whenever a
process requests a resource, it does not hold any other
resources.

Require process to request and be allocated all its
resources before it begins execution, or allow process to
request resources only when the process has none.

Low resource utilization; starvation possible.

9 .
Operating System Concepts 8.13 Silberschatz, Galvin and Gagne ©2002 &@&
-

Deadlock Prevention (Cont.)

® No Preemption —

If a process that is holding some resources requests
another resource that cannot be immediately allocated to it,
then all resources currently being held are released.

Preempted resources are added to the list of resources for
which the process is waiting.

Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

m Circular Wait — impose a total ordering of all resource

types, and require that each process requests resources
in an increasing order of enumeration.

9 .
Operating System Concepts 8.14 Silberschatz, Galvin and Gagne ©2002 &é&
-




Deadlock Prevention (Cont.)

m Circular wait
R={R,R,, ... ,R,}
F:R? N

F(Unita a nastri) = 1
F(Unita a dischi) =5
F(Stampante) = 12

Prima richiesta di Pi e k di Rj

Seconda richiesta di Pi puo essere m di Ru se e solo se
F(Ru) > F(Rj)

Si rendono impossibili le attese circolari ...

9 .
Operating System Concepts 8.15 Silberschatz, Galvin and Gagne ©2002 &@&
-

Deadlock Prevention (Cont.)

B Dimostrazione (per assurdo)

Supponiamo di trovarci in condizioni di attesa circolare con
{Po: Py, ..., P} e con Py che possiede la risorsa Ry ed € in
attesa della risorsa R, P, possiede la risorsa R; ed & in
attesa della risorsa R,, ed in generale P; possiede R; ed
aspetta Ri,,; allora dovrebbe essere che:

F(Ro) < F(R;) < F(R;) < F(Rj) ... < F(Ry) < F(Ro)

Che porta ovviamente ad un assurdo

Operating System Concepts 8.16 Silberschatz, Galvin and Gagne ©2002 &9&




Deadlock Avoidance

Requires that the system has some additional a priori information
available.

B Simplest and most useful model requires that each
process declare the maximum number of resources of
each type that it may need.

B The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can
never be a circular-wait condition.

B Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

9 .
Operating System Concepts 8.17 Silberschatz, Galvin and Gagne ©2002 &@&
-

Safe State

B \When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.

B System is in safe state if there exists a safe sequence of all
processes.

B Sequence <P, P,, ..., P> is safe if for each P;, the resources
that Pi can still request can be satisfied by currently available
resources + resources held by all the P;, with j<I.

If P, resource needs are not |mmed|ately available, then P; can wait
until all P, have finished.

When P, is finished, P, can obtain needed resources, execute,
return allocated resources and terminate.

When P, terminates, P,,; can obtain its needed resources, and so
on.

9 .
Operating System Concepts 8.18 Silberschatz, Galvin and Gagne ©2002 &é&
-







Resource-Allocation Graph Algorithm

m Claim edge P; ® R;indicated that process P; may request
resource Rj; represented by a dashed line.

m Claim edge converts to request edge when a process
requests a resource.

B When a resource is released by a process, assignment
edge reconverts to a claim edge.

B Resources must be claimed a priori in the system.

9 .
Operating System Concepts 8.21 Silberschatz, Galvin and Gagne ©2002 &@&
-

Resource-Allocation Graph For Deadlock Avoidance

A,

Operating System Concepts 8.22 Silberschatz, Galvin and Gagne ©2002 &$&







- Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

® Available: Vector of length m. If available [j] = k, there are
k instances of resource type R;available.

B Max: n x m matrix. If Max [i,j] =k, then process P; may
request at mostk instances of resource type R;.

m Allocation: n x m matrix. If Allocation[i,j] =k then P; is
currently allocated k instances of R;

B Need: n x m matrix. If Need[i,j] = k, then P; may need k
more instances of R;to complete its task.

Need [i,j] = Max{i,j] — Allocation [i,j].

9 .
Operating System Concepts 8.25 Silberschatz, Galvin and Gagne ©2002 &@&
-

Safety Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Available
Finish [i] = false fori- 1,3, ..., n.
2. Find and i such that both:
(a) Finish [i] = false
(b) Need, £ Work
If no suchii exists, go to step 4.
3. Work =Work + Allocation;
Finish[i] = true
go to step 2.
4. If Finish [i] == true for all i, then the system is in a safe
state.

9 .
Operating System Concepts 8.26 Silberschatz, Galvin and Gagne ©2002 &é&
-




: Resource-Request Algorithm for Process P;

Request = request vector for process P;. If Request;[j] = k
then process P; wants k instances of resource type R;

1. If Request; £ Need; go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

2. If Request; £ Available, go to step 3. Otherwise P; must
wait, since resources are not available.

3. Pretend to allocate requested resources to P; by modifying
the state as follows:

Available = Available - Request;
Allocation; = Allocation; + Request;
Need = Need, — Request;.

¢ If safe b the resources are allocated to P;.

° If unsafe P P; must wait, and the old resource-allocation
state is restored

9 .
Operating System Concepts 8.27 Silberschatz, Galvin and Gagne ©2002 &@&
-

Example of Banker’'s Algorithm

B 5 processes P, through P,; 3 resource types A
(10 instances),
B (5instances), and C (7 instances).

B Snapshot at time T:
Allocation = Max  Available
ABC ABC ABC
Po 010 753 8382
P, 200 322
P, 302 902
P; 211 222
P, 002 433

Operating System Concepts 8.28 Silberschatz, Galvin and Gagne ©2002 &9&




Example (Cont.)

B The content of the matrix. Need is defined to be Max —

Allocation.

Need

ABC
P, 743
P, 122
P, 600
P, 011
P, 431

B The system is in a safe state since the sequence < Py, P3, Py,
P,, Py> satisfies safety criteria.

9 .
Operating System Concepts 8.29 Silberschatz, Galvin and Gagne ©2002 &@&
-

Example P, Request (1,0,2) (Cont.)

B Check that Request £ Available (that is, (1,0,2) £ (3,3,2) b
true.

Allocation Need Available
ABC ABC ABC

P, 010 743 230
P, 302 020
P, 301 600
P, 211 011
P, 002 431

B Executing safety algorithm shows that sequence <P, P3, P,,
Py, P,> satisfies safety requirement.

B Can request for (3,3,0) by P, be granted?

m Can request for (0,2,0) by P, be granted? 3

Operating System Concepts 8.30 Silberschatz, Galvin and Gagne ©2002 &9&







Resource-Allocation Graph and Wait-for Graph

[LE]

Resource-Allocation Graph Corresponding wait-for graph

9 .
Operating System Concepts 8.33 Silberschatz, Galvin and Gagne ©2002 é@&
-

Several Instances of a Resource Type

B Available: A vector of length m indicates the number of
available resources of each type.

m Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each
process.

B Request: An n x m matrix indicates the current request
of each process. If Request [i] =k, then process P; is
requesting k more instances of resource type. R;.

Operating System Concepts 8.34 Silberschatz, Galvin and Gagne ©2002 &$&







Example of Detection Algorithm

B Five processes P, through P,; three resource types
A (7 instances), B (2 instances), and C (6 instances).

B Snapshot at time Ty

Allocation Request _Available
ABC ABC ABC

Pob, 010 000 000
P, 200 202
P, 303 000
P, 211 100
P, 002 002
B Sequence <Py, P,, P3, P4, P> will result in Finish[i] = true

for all i.

9 .
Operating System Concepts 8.37 Silberschatz, Galvin and Gagne ©2002 &@&
-

Example (Cont.)

B P, requests an additional instance of type C.

Request

ABC
P, 000
P, 201
P, 001
P; 100
P, 002

m State of system?
Can reclaim resources held by process P, but insufficient
resources to fulfill other processes; requests.

Deadlock exists, consisting of processes P,, P,, P;, and P,,.

Operating System Concepts 8.38 Silberschatz, Galvin and Gagne ©2002 &9&




Detection-Algorithm Usage

® When, and how often, to invoke depends on:
How often a deadlock is likely to occur?
How many processes will need to be rolled back?
- one for each disjoint cycle

m [f detection algorithm is invoked arbitrarily, there may be
many cycles in the resource graph and so we would not
be able to tell which of the many deadlocked processes
“caused” the deadlock.

9 .
Operating System Concepts 8.39 Silberschatz, Galvin and Gagne ©2002 &@&
-

Recovery from Deadlock: Process Termination

® Abort all deadlocked processes.

B Abort one process at a time until the deadlock cycle is
eliminated.

B [n which order should we choose to abort?
Priority of the process.

How long process has computed, and how much longer to
completion.

Resources the process has used.

Resources process needs to complete.

How many processes will need to be terminated.
Is process interactive or batch?

Operating System Concepts 8.40 Silberschatz, Galvin and Gagne ©2002 &9&




Recovery from Deadlock: Resource Preemption

B Selecting a victim — minimize cost.

B Rollback — return to some safe state, restart process for
that state.

B Starvation — same process may always be picked as
victim, include number of rollback in cost factor.

9 .
Operating System Concepts 8.41 Silberschatz, Galvin and Gagne ©2002 &@&
-

- Combined Approach to Deadlock Handling

B Combine the three basic approaches
prevention
avoidance
detection

allowing the use of the optimal approach for each of
resources in the system.

B Partition resources into hierarchically ordered classes.

m Use most appropriate technique for handling deadlocks
within each class.

Operating System Concepts 8.42 Silberschatz, Galvin and Gagne ©2002 &9&







