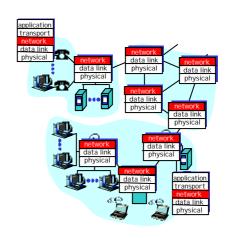
II Livello Network

Obiettivi:

- Comprendere i principi sottostanti i servizi del livello network:
 - m routing (selezione del percorso)
 - m gestione della dimensione della rete
 - m funzionamento dei router
 - m I Pv6, multicast
- Instanziazione e implementazione in Internet

Panoramica:

- Servizi del livello network
- Principi di routing: selezione del percorso (path selection)
- Routing gerarchico
- Protocolli di transferimento affidabile del routing in Internet
 - m intra-domain
 - m inter-domain
- r Cosa c'è in un router?
- r IPv6
- r multicast routing


Il Livello Network 4a-1

Funzioni del Livello Network

- trasporto di pacchetti dagli host mittenti ai destinatari
- I protocolli di livello network sono presenti in tutti gli host e router

Tre funzioni importanti:

- r path determination: percorso seguito dai pacchetti dalla sorgente alla dest. Algoritmi di routing
- switching: nel router spostare i pacchetti dall'input all'output appropriato
- call setup: architetture di rete che richiedono che il router stabilisca l'intero percorso all'inizio

Modelli di servizio di Network

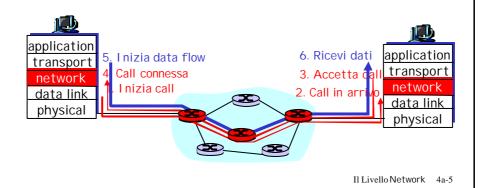
Q: Che modello di servizio per il "canale" che trasporta i pacchetti dai mittenti ai destinatari?

r Largh. di banda garantita?

- r L'inter-packet timing viene preservato (no jitter)?
- r Consegna senza perdite?
- Consegna ordinata?
- Feedback sulla congestione al mittente?

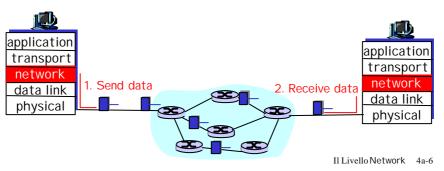
LA più importante astrazione fornita dal livello network:

> virtual circuit 0 datagram?


> > Il Livello Network 4a-3

Circuiti Virtuali (VC)

- "il percorso mittente-destinatario si comporta come un circuito telefonico"
 - m orientato alla performance
 - m azioni della rete lungo il percorso mitt.-dest.
- r Fase di call setup per ciascuna trasmissione prima che inizi il flusso dati
- r Ciascun pacchetto contiene un identificatore di VC (e non un indirizzo di host)
- r Tutti i router sul percorso mitt.-dest. Mantiene uno "stato" per ciascuna connessione
- r Le risorse del link e del router (largh. di banda, buffer) possono essere allocati al VC
 - m Per ottenere una prestazione simile ad un circuito fisico



- r Usati per stabilire, mantenere abbattere i VC
- r Usati in ATM, frame-relay, X.25
- r Non usati nell'attuale Internet

Reti Datagram: il modello Internet

- r Non c'è call setup a livello network
- r router: non c'è stato delle connessioni end-to-end m Non esiste il concetto di "connessione" al livello network
- r pacchetti tipicamente instradati usando I D del destinatario
 - m Ciascun pacchetto può intraprendere un percorso diverso

Modelli Servizio Livello Network:

Architettura	Modello		Garan	zie?		Feedback	
Network	Servizio	Banda	Perd.	Ordin.	Temp.	Congestione	
Internet	best effort	Nessuna garanzia	no	no	no	no (inferita dalle perdite)	
ATM	CBR	costante	si	si	si	Non c'è congestione	
ATM	VBR	garantita	si	si	si	Non c'è congestione	
ATM	ABR	minimo garantito	no	si	no	si	
ATM	UBR	Nessuna garanzia	no	si	no	no	

Il modello Internet è in corso di estensione: Intserv, Diffserv

Il Livello Network 4a-7

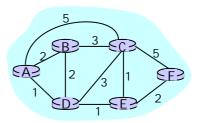
Reti di tipo Datagram o VC?

Internet

- Scambio dati tra computer
 - m Servizio "elastico", non è richiesta tempif. forte
- Gli end systems sono "smart" (computer)
 - m Possono adattarsi, effettuare controlli, recupero errori
 - m La rete è semplice, la complessità è ai "bordi"
- Molti tipi di link
 - m differenti caratteristiche
 - m Difficoltà uniforme

ATM

- Nasce dalla telefonia
- Conversazione umana:
 - m Tempif. forte, esigenze di affidabilità
 - m Necessità di servizi garantiti
- r Gli end systems sono "dumb"
 - m telefoni
 - m La complessità è all'interno della rete


Routing

-Routing protocol

Goal: stabilire sulla rete un "buon" path dal mitt. al dest. (sequenza di router)

Gli algoritmi di routing utilizzano i grafi :

- r I nodi sono i router
- r Gli archi sono i link fisici
 - m Costo del link: ritardo, costo \$, o livello di congestione

r "buon" path:

- m Tipicamente indica il path a costo minimo
- m Sono possibili altre definizioni

Il Livello Network 4a-9

Classificazione algoritmi di Routing

Informazione global o decentralizzzata?

Globale:

- Tutti i router conoscono la topologia completa, il costo dei link
- r Algoritmi "link state"

Decentralizzata:

- r Un router conosce i vicini fisicamente connessi, il costo dei link verso i vicini
- r processo iterativo di calcolo, scambio di info con i vicini
- r Algoritmi "distance vector"

Statici o dinamici? Statici:

r I percorsi cambiano lentamente nel tempo

Dinamici:

- r I percorsi cambiano velocemente
 - m aggiornamento periodico
 - m in risposta al cambiamento del costod dei link

Un algoritmo di Routing Link-State

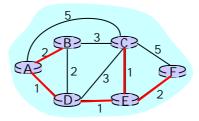
Algoritmo di Dijkstra

- r Topologia della rete, costo link noti a tutti i nodi
 - M Ottenuti tramite un "link state broadcast"
 - m Tutti i nodi hanno le stesse info
- Calcola i percorsi a costo minimoda un nodo ('source") a tutti gli altri nodi
 - m Da la tabella di routing per quel nodo
- r iterativo: dopo k iterazioni, conosco i percorsi a costo minimo verso k destinazioni

Notazione:

- r c(i,j): costo del link dal nodo i a j. costo infinito se non sono vicini diretti
- r D(v): valore corrente del costo di un percorso dalla sorgente alla destinaz. V
- r p(v): nodo predecessore lungo il percorso dalla sorg. a v, ovvero il prossimo v
- r N: insieme dei nodi i cui percorsi minimi sono definitivamente noti

Il Livello Network 4a-11


L'Algoritmo di Dijsktra

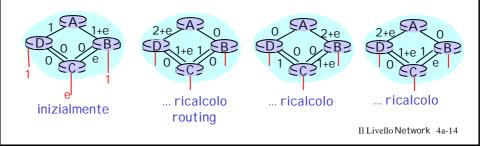
```
1 Inizializzazione:
2
   N = \{A\}
3 for tutti i nodi v
     if v adiacente ad A
5
       then D(v) = c(A, v)
6
       else D(v) = infinito
7
8
   Loop
9
     Trova w not in N tale che D(w) è un minimo
10
     aggiungi w a N
11
     aggiorna D(v) per tutti i v adiacenti a w e not in N:
        D(v) = \min(D(v), D(w) + c(w,v))
12
13
    /* il nuovo costo di v è il vecchio costo di v o il più breve
14
      Percorso noto di w più il costo da w a v */
15 until tutti i nodi in N
                                                     Il Livello Network 4a-12
```

Algoritmo di Dijkstra: esempio

Step	start N	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
 0	Α	2,A	5,A	1,A	infinito	infinito
1	AD	2,A	4,D		2,D	infinito
 2	ADE	2,A	3,E			4,E
→ 3	ADEB		3,E			4,E
 4	ADEBC					4,E

5 ADEBCF

Il Livello Network 4a-13


Algoritmo di Dijkstra, discussione

complessità algoritmo: n nodi

- r Ogni iterazione: deve controllare tutti i nodi, w, not in N
- r $n^*(n+1)/2$ comparazioni: $O(n^*2)$
- r Implementazione possibile a massima efficienza : O(nlogn)

Possibili Oscillazioni:

r Per es., costo del link = ammontare di traffico gestito

Algoritmo di Routing Distance Vector

iterativo:

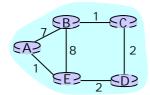
- r continua finché ci sono scambi di info tra nodi
- r self-terminating: non c'è un "segnale" di stop

asincrono:

r I nodi non devono scambiare le info in passi predeterminati!

distribuito:

r Ogni nodo comunica solo con i vicini diretti


struttura dati Distance Table

- Ogni nodo ha una sua propria
 riga per ciascuna destinazione
- Una colonna per ogni vicino diretto del nodo
- r esempio: nel nodo X, per dest. Y via vicino Z:

$$\begin{array}{c} X \\ D(Y,Z) \end{array} = \begin{array}{c} \text{distanza } \textit{da} \ X \ \textit{a} \\ Y, \textit{via} \ Z \ \text{come next hop} \\ = \ c(X,Z) + \min_{W} \{D^{Z}(Y,W)\} \end{array}$$

Il Livello Network 4a-15

Distance Table: esempio

$$\begin{split} D^{E}(C,D) &= c(E,D) + min_{W} \{D^{D}(C,w)\} \\ &= 2 + 2 = 4 \\ D^{E}(A,D) &= c(E,D) + min_{W} \{D^{D}(A,w)\} \\ &= 2 + 3 = 5 \text{ loop!} \\ D^{E}(A,B) &= c(E,B) + min_{W} \{D^{B}(A,w)\} \\ &= 8 + 6 = 14 \text{ loop!} \end{split}$$

D	costo	o a de: A	stinazi B	one via D
	Α	1	14	5
ione	В	7	8	5
destinazione	С	6	9	4
J	D	4	11	2

distance table e routing table

Distance table — Routing table

Il Livello Network 4a-17

Routing Distance Vector: panoramica

- I terativo, asincrono: ogni iterazione locale causata da:
- r cambio costo del link locale
- Messaggio dai vicini: il suo percorso a costo minimo è cambiato

Distribuito:

- r Ogni nodo notifica i vicini solo se ci sono cambiamenti
 - M I vicini poi notificano, se necessario, i propri vicini

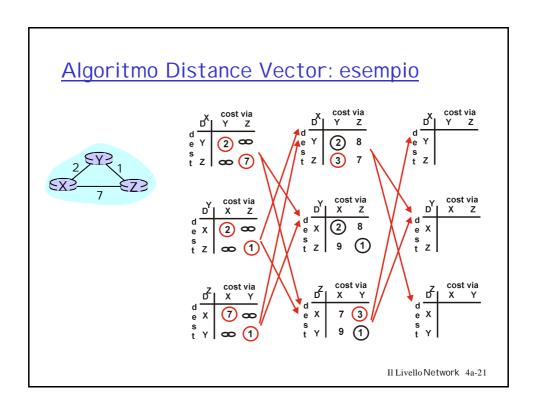
Ogni nodo:

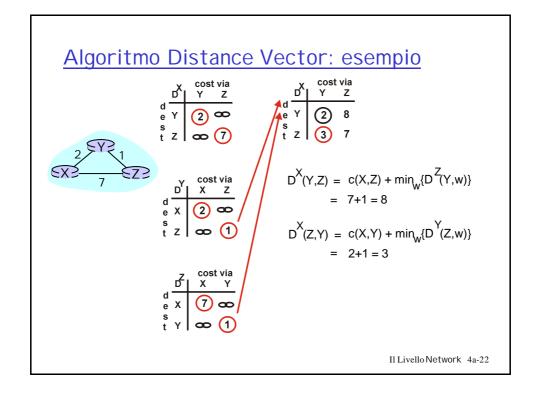
attendi (cambio costo del link o msg da vicini)

ricalcola distance table

percorso minimo per quals.
destinaz. cambiato, notifica
vicini

<u>Algoritmo Distance Vector:</u>

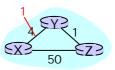

per tutti i nodi, X:

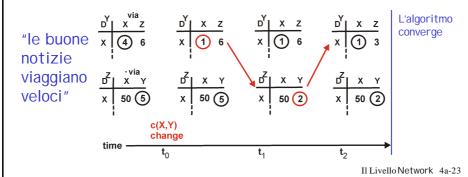

```
1 Inizializzazione:
2 Per tutti i nodi adiacenti v:
3 DX(*,v) = infinito /* l'operatore * sta per 'tutte le righe" */
4 DX(v,v) = c(X,v)
5 Per tutte le destinazioni, y
6 invia min DX(y,w) a ogni vicino /* w su tutti i vicini di X */
```

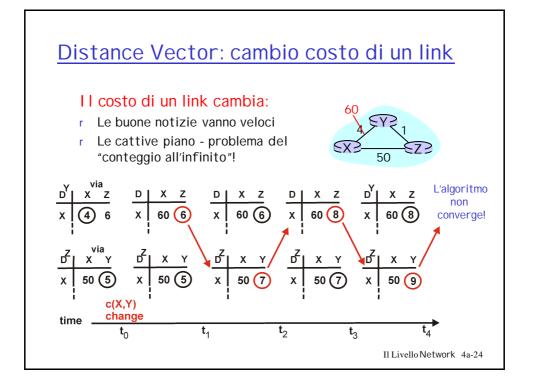
Il Livello Network 4a-19

Algoritmo Distance Vector (cont.):

```
8 loop
9 wait (finchè rilevi un cambio di costo del link per il vicino V
        o finchè ricevi un aggiornamento dal vicino V)
10
11
12 if (c(X,V) cambia di d)
     /* cambia di d i costi di tutte le dest. attraverso il vicino v */
13
      /* nota: d può essere sia positivo che negativo */
14
     per tutte le destinazioni y: D^{X}(y,V) = D^{X}(y,V) + d
15
16
17
    else if (ricevuto aggiornamento da V verso la destinazione Y)
     /* il percorso minimo da V a un dato Y è cambiato */
18
19
     /* V ha inviato un nuovo valore per il suo min<sub>w</sub>DV(Y,w) */
20
     /* chiamiamolo "newval"
     per la singola destinazione y: D^{X}(Y,V) = c(X,V) + newval
21
22
    if esiste un nuovo min<sub>w</sub>D<sup>X</sup>(Y,w) per una destinazione Y
23
      Invia il nuovo valore di min DX(Y,w) a tutti i vicini
24
25
26 forever
                                                        Il Livello Network 4a-20
```

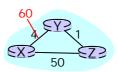


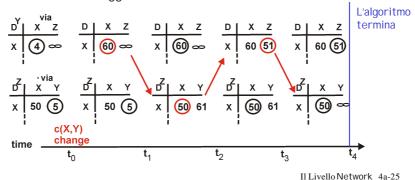



Distance Vector: cambio costo di un link

Il costo di un link cambia:

- r Un nodo rileva il cambiamento
- r aggiorna la distance table (linea 15)
- r Se cambia un percorso a costo minimo, notifica i vicini (linee 23,24)





Distance Vector: poisoned reverse

Se Z passa per Y per arrivare a X:

- r Z dice a Y che la sua distanza da X è infinita (così Y non vorrà instradare a X via Z)
- r Questo risolve completamente il problema del conteggio all'infinito?

Paragone tra gli algoritmi di LS e DV

Complessità del Messaggio

- r <u>LS:</u> con n nodi, E link, O(nE) messaggi inviati
- r DV: scambio solo tra i vicini
 - m Tempo di convergenza variabile

Velocità di Convergenza

- r <u>LS:</u> algoritmo O(n**2) richiede O(nE) messaggi
 - m può avere oscillazioni
- r DV: il tempo di converg. varia
 - m vi possono essere dei loop nel routing
 - m problema del conto all'infinito

Robustezza: che succede se il router si quasta?

LS:

- m II nodo può segnalare un costo del *link* sbagliato
- M Ogni nodo calcola solo la sua tabella

DV:

- m II nodo può segnalare un costo del *path* sbagliato
- m La tabella di ciascun nodo è usata dagli altri
 - L'errore si propaga attraverso la rete

Routing Gerarchico

Abbiamo usato finora delle ipotesi ideali

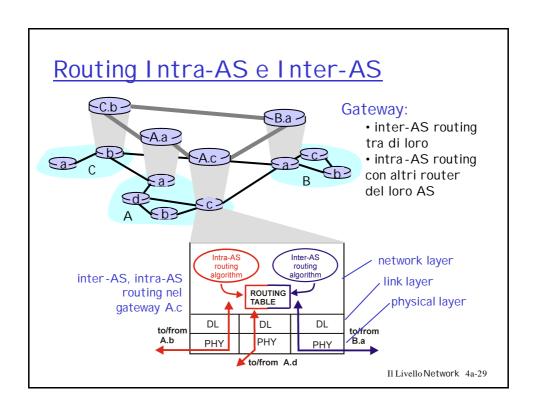
- r Tutti i router sono uguali
- r La rete è "flat"
- ... che non sono vere nella pratica

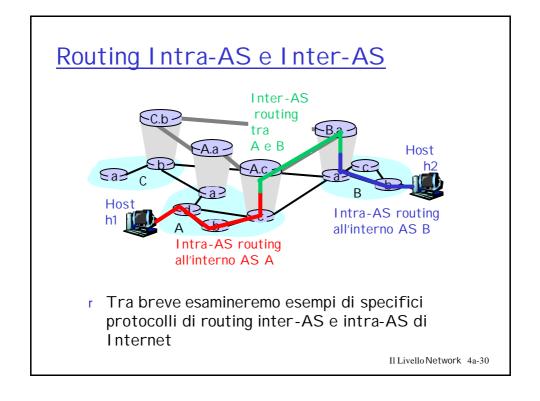
dimensioni: con 50 milioni di destinazioni:

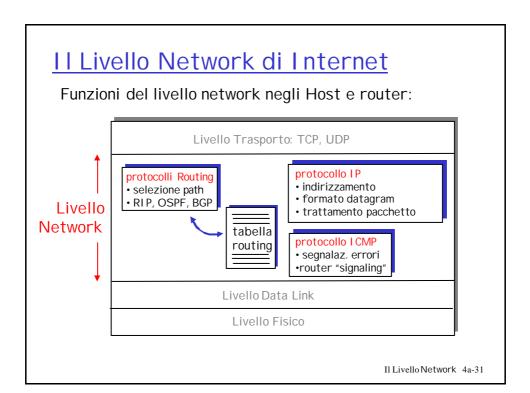
- r Non è possibile registrare tutte le destinazioni nelle tabelle di routing!
- r Lo scambio delle tabelle di routing saturebbe i link!

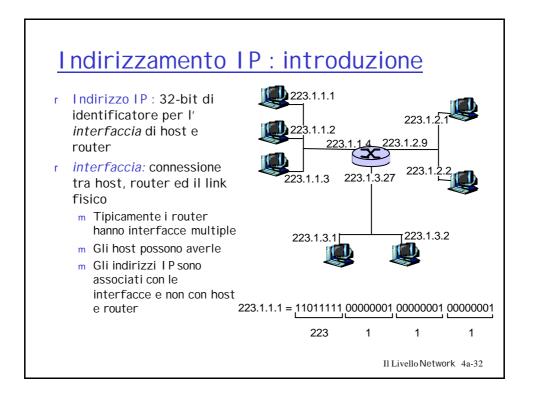
autonomia amministrativa

- r internet = rete di reti
- r Ciascun amministratore di rete vuole controllare il routing nella sua specifica rete

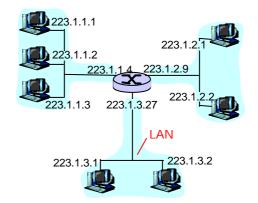

Il Livello Network 4a-27

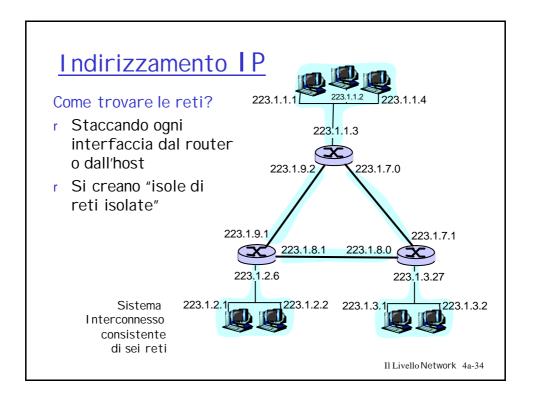

Routing Gerarchico


- r I router sono aggregati in regioni, "autonomous systems" (AS)
- r I router nello stesso AS hanno lo stesso protocollo
 - m Protocollo di "intra-AS" routing
 - m router in AS differenti possono avere protocolli intra-AS routing diversi


gateway routers

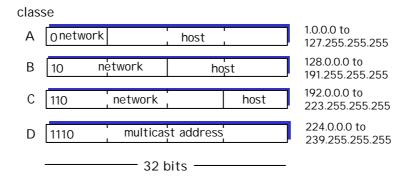
- r router speciali negli AS
- r Eseguono il protocollo di intra-AS routing con tutti gli altri router dell'AS
- Anche responsabile per il routing per le destinazioni esterne AS
 - m Eseguono un protocollo inter-AS routing con altri gateway routers




Indirizzamento IP

r Indirizzo IP:

- m parte rete (high order bits)
- m parte host (low order bits)
- r Cos'è una rete? (dal punto di vista dell'indirizzo IP)
 - m Dispositivi di interfaccia che hanno la stessa parte rete dell'indirizzo I P
 - m Possono raggiungersi l'un l'altro senza l'intervento del router


Rete consistente di 3 reti I P (per gli indirizzi I P che iniziano con 223, I primi 24 bit sono indirizzo di rete)

<u>Indirizzi IP</u>

Data la nozione di "rete", riesaminiamo gli indirizzi IP:

indirizzamento"a classi" (class-full):

Il Livello Network 4a-35

Indirizzamento IP: CIDR

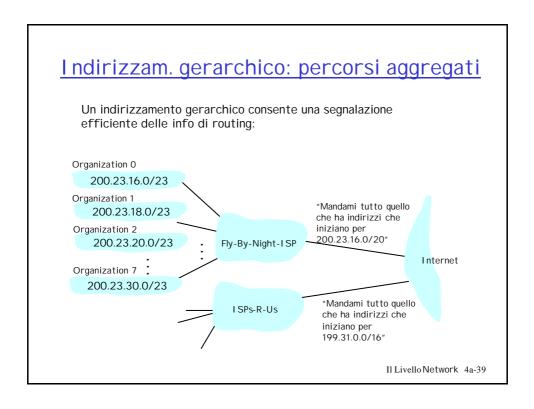
- r Indirizzamento a classi:
 - m uso inefficiente dello spazio indirizzi, esaurimento spazio indirizzi
 - m Per es., una rete di classe B alloca indirizzi per 65K host, anche se ce ne sono solo 2K in quella specifica rete
- r CIDR: Classless InterDomain Routing
 - m Parte indirizzo destinata alla rete di lunghezza arbitraria
 - m formato indirizzo: a.b.c.d/x, dove x è # bit della parte rete dell'indirizzo

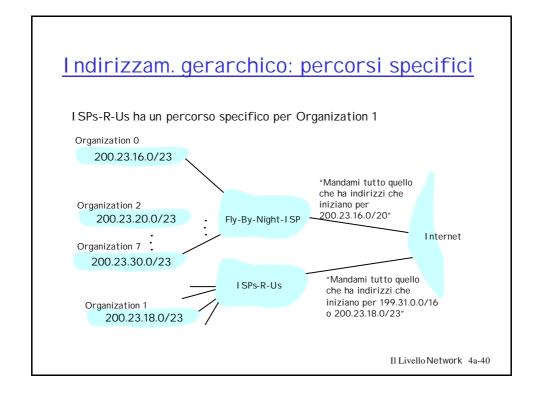
200.23.16.0/23

Indirizzi IP: come ottenerli?

Per gli Host (parte host):

- r scritti in un file da amministr, di sistema
- r DHCP: Dynamic Host Configuration Protocol: indirizzi ottenuti dinamicamente: "plug-and-play"
 - m L'host invia in broadcast messaggio "DHCP discover"
 - m II server DHCP risponde con messaggio "DHCP offer"
 - m L'host richiede un indirizzo IP: messaggio "DHCP request"
 - m II server DHCP invia l'indirizzo: messaggio "DHCP ack"

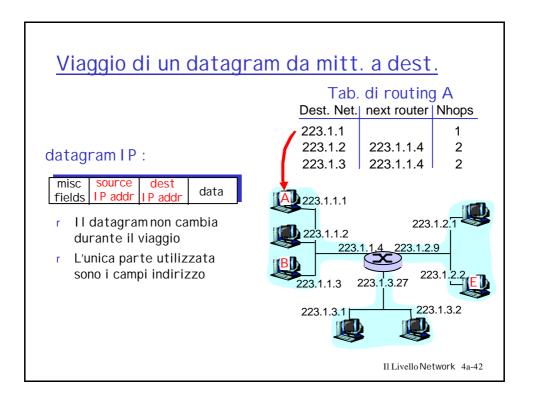

Il Livello Network 4a-37


Indirizzi IP: come ottenerli?

Network (parte rete):

r Parti allocate spazio indirizzi per ISP:

ISP's block	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0	<u>11001000</u>	00010111	<u>0001000</u> 0	00000000	200.23.16.0/23
Organization 1	11001000 C	00010111	<u>0001001</u> 0	00000000	200.23.18.0/23
Organization 2	11001000 C	00010111	<u>0001010</u> 0	00000000	200.23.20.0/23
•••				••••	••••
Organization 7	11001000 0	00010111	<u>0001111</u> 0	00000000	200.23.30.0/23

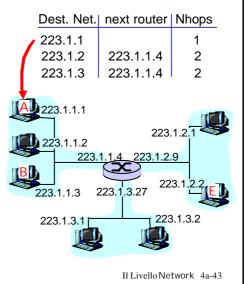

Indirizzam. IP: un ultima cosa...

O: Come fa un I SP ad ottenere un blocco di indirizzi?

A: ICANN: Internet Corporation for Assigned

Names and Numbers

- m Alloca gli indirizzi
- m Gestisce i DNS
- M Assegna i nomi di dominio, arbitra eventuali dispute

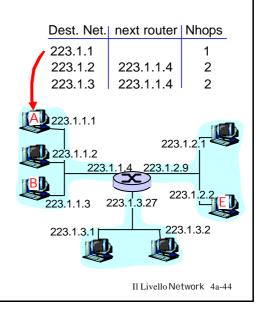


Viaggio di un datagram da mitt. a dest.

misc fields	223.1.1.1	223.1.1.3	data
rielas	220:::	220::::0	

Partendo da A, un certo IP datagram indirizzato a B:

- r Cerca l'indirizzo rete di B
- r Trova B sulla stessa rete di A
- Il livello link invierà il datagram direttamente a B in un pacchetto di livello link
 - m B e A sono connessi direttamente

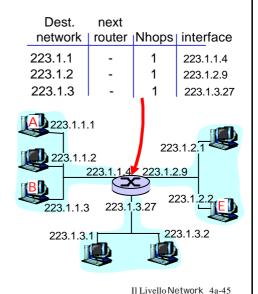


Viaggio di un datagram da mitt. a dest.

misc	000111	222122	doto
fields	223.1.1.1	223.1.2.2	uata

Partendo da A, dest. E:

- r Cerca l'indirizzo rete di E
- r E su rete differente
 - m A, E non dirett. connessi
- r Tabella di routing: il prossimo router per E è 223.1.1.4
- r II link layer invia il datagram al router 223.1.1.4 in un pacchetto di livello link
- r II datagramarriva a 223.1.1.4
- r continua.....



Viaggio di un datagram da mitt. a dest.

misc			
fields	223.1.1.1	223.1.2.2	data

Arrivo a 223.1.4, destinazione 223.1.2.2

- r Cerca l'indirizzo rete di E
- r E *stessa* rete dell'interfaccia 223.1.2.9 del router
 - m router ed E connessi dir.
- r II link layer invia il datagram a 223.1.2.2 in un pacchetto di livello link attraverso l' interfaccia 223.1.2.9
- r datagram arriva a 223.1.2.2!!! (hurrà!)

