Chapter 9: Memory Management

Background

. - Swapping
Contiguous Allocation
Paging
Segmentation
Segmentation with Paging

Operating System Concepts a1 Silberschatz, Galvin and Gagne ©2002

Background

Program must be brought into memory and placed within
R . a process for it to be run.
Input queue collection of processes on the disk that are
waiting to be brought into memory to run the program.

User programs go through several steps before being
run.

=

Operating System Concepts 92

Binding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses can
happen at three different stages.

Compile time: If memory location known a priori,
absolute code can be generated; must recompile code if
starting location changes.

Load time: Must generate relocatable code if memory
location is not known at compile time.

Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another. Need hardware support for
address maps (e.g., base and limit registers).

Operating System Concepts 93 Silberschatz, Galvin and Gagne ©2002

Multistep Processing of a User Program

-

linkage

7 toad ¥ oad
| modile time

Fed B
Lo I
nage

-
Operating System Concepts 9.4 Silberschatz, Galvin and Gagne ©2002 F" “

=4

Logical vs. Physical Address Space

The concept of a logical address space that is bound to a
. separate physical address space is central to proper
memory management.
Logical address generated by the CPU; also referred to as
virtual address.
Physical address address seen by the memory unit.

Logical and physical addresses are the same in compile-
time and load-time address-binding schemes; logical
(virtual) and physical addresses differ in execution-time
address-binding scheme.

Operating System Concepts 95

Memory-Management Unit (Mmu)

Hardware device that maps virtual to physical address.
In MMU scheme, the value in the relocation register is
added to every address generated by a user process at
the time it is sent to memory.

The user program deals with logical addresses; it never
sees the real physical addresses.

Operating System Concepts 96

ynamic relocation using a relocation register

Dynamic Loading

Routine is not loaded until it is called

. - Better memory-space utilization; unused routine is never
loaded.

relocation
register Useful when large amounts of code are needed to handle
infrequently occurring cases.
logical physical No special support from the operating system is required
address /\ address : :
CPU + ey implemented through program design.
346 _/ 14346
MMU
5
Operating System Concepts 07 Silberschatz, Galvin and Gagne ©2002 Operating System Concepts 08 Siberschatz, Gaiin and Gagne ©2002 |8 &
Dynamic Linking Overlays

Linking postponed until execution time.
. - Small piece of code, stub, used to locate the appropriate
memory-resident library routine.

Stub replaces itself with the address of the routine, and
executes the routine.

Operating system needed to check if routine is in
processes memory address.

Dynamic linking is particularly useful for libraries.

Operating System Concepts 99

Keep in memory only those instructions and data that are
. needed at any given time.

Needed when process is larger than amount of memory
allocated to it.

Implemented by user, no special support needed from
operating system, programming design of overlay
structure is complex

Operating System Concepts 910

Overlays for a Two-Pass Assembler

symbol 20K
table

common 30K

routines

overlay 10K
driver

80K

Operating System Concepts 011 Silberschatz, Galvin and Gagne ©2002 |

Swapping

A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for continued
N ° execution.

Backing store fast disk large enough to accommodate copies
of all memory images for all users; must provide direct access to
these memory images.

Roll out, roll in swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed.

Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped.

Modified versions of swapping are found on many systems, i.e.,
UNIX, Linux, and Windows.

=
)
Silberschatz, Galvin and Gagne ©2002 ‘l'“

Operating System Concepts 912

Schematic View of Swapping

operating
: system
@ swap out
process

@ swap in Py

user

SPEED backing store

main memory
Operating System Concepis 913 Silberschatz, Galvin and Gagne ©2002

Contiguous Allocation

Main memory usually into two partitions:
. Resident operating system, usually held in low memory with
interrupt vector.
User processes then held in high memory.

Single-partition allocation
Relocation-register scheme used to protect user processes
from each other, and from changing operating-system code
and data.
Relocation register contains value of smallest physical
address; limit register contains range of logical addresses
each logical address must be less than the limit register.

Operating System Concepts 914

Hardware Support for Relocation and Limit Registers

limnit relocation
register register

logical physical
address yes address
CPU < O memory

trap; addressing error

Operating System Concepts 915

Contiguous Allocation (Cont.)

Multiple-partition allocation
- Hole block of available memory; holes of various size are
scattered throughout memory.
When a process arrives, it is allocated memory from a hole
large enough to accommodate it.
Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

0os os 0os 0os
process 5 process 5 process 5 process 5
process 9 process 9
process 8 —> — —> process 10
process 2 process 2 process 2 process 2

Operating System Concepts 916

Dynamic Storage-Allocation Problem

How to.satisfy a request of size n from a list of free holes.

First-fit: Allocate the first hole that is big enough.
Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size.
Produces the smallest leftover hole.

Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

First-fit and best-fit better than worst-fit in terms of
speed and storage utilization.

Operating System Concepts 017 Silberschatz, Galvin and Gagne ©2002

[s%

Fragmentation

External Fragmentation total memory space exists to
_ satisfy a request, but it is not contiguous.
Internal Fragmentation allocated memory may be
slightly larger than requested memory; this size difference
is memory internal to a partition, but not being used.
Reduce external fragmentation by compaction
Shuffle memory contents to place all free memory together
in one large block.
Compaction is possible only if relocation is dynamic, and is
done at execution time.
1/0 problem
Latch job in memory while it is involved in 1/0.
Do I/0 only into OS buffers.

Operating System Concepts 018

=
)
Silberschatz, Galvin and Gagne ©2002 ‘l'“

Paging

Logical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available.

Divide physical memory into fixed-sized blocks called frames
(size is power of 2, between 512 bytes and 8192 bytes).
Divide logical memory into blocks of same size called pages.
Keep track of all free frames.

To run a program of size n pages, need to find n free frames
and load program.

Set up a page table to translate logical to physical addresses.

Internal fragmentation.

Operating System Concepts 919 Silberschatz, Galvin and Gagne ©2002

Address Translation Scheme

Address generated by CPU is divided into:

. Page number (p) used as an index into a page table which
contains base address of each page in physical memory.

Page offset (d) combined with base address to define the
physical memory address that is sent to the memory unit.

AP)

Address Translation Architecture Paging Example
frame
number
- “ i - “ page 0 0
logical physical
address address f0000 . .. 0000 page t 1| pageo
— page 2 2
page 3 page table 3| page2
1. 1111
logical 4| page1
memory
5
I 6
_ physical
ot
page table
physical
memory
Operating System Concepts. 9.21 Operating System Concepts. 9.22 Silberschatz, Galvin and Gagne ©2002 |,
Paging Example Free Frames
o free-frame list free-frame list
13 13 | page 1
) 05 S) 14 14 |page 0
0 i [
az o — | E—
2 16 16
& . .
17 17
18 18 |page 2
BTN 19 19
a7 5 20 20 [page 3|
:
3 21 new-process page table 21
5
(a) (b)
Before allocation After allocation

Implementation of Page Table

Page table is kept in main memory.

. Page-table base register (PTBR) points to the page table.
Page-table length register (PRLR) indicates size of the
page table.

In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for
the data/instruction.

The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called
associative memory or translation look-aside buffers
(TLBs)

Operating System Concepts 925 Silberschatz, Galvin and Gagne ©2002

Associative Memory

Associative memory parallel search
. Page # Frame #

Address translation (A", A”")
If A" is in associative register, get frame # out.
Otherwise get frame # from page table in memory

Operating System Concepts 926 Silberschatz, Galvin and Gagne ©2002 LS

Paging Hardware With TLB

Togical
address
cPU
page frame
number _number
TLB hit physical
address
f]d
B
i {
TLB miss
1
physical
memory
page table

Operating System Concepts 927

Silberschatz, Galvin and Gagne ©2002 [»"

Effective Access Time

Associative Lookup = € time unit
- Assume memory cycle time is 1 microsecond
Hit ratio percentage of times that a page number is
found in the associative registers; ration related to
number of associative registers.
Hit ratio = a
Effective Access Time (EAT)
EAT=(1+e)a+(2+e)(1l a)
=2+g «a

[

Operating System Concepts 928 Silberschatz, Galvin and Gagne ©2002

=4

Memory Protection

Memory protection implemented by associating protection
. bit with each frame.

Valid-invalid bit attached to each entry in the page table:
valid indicates that the associated page is in the process
logical address space, and is thus a legal page.
invalid indicates that the page is not in the process logical
address space.

Valid (v) or Invalid (i) Bit In A Page Table

2| page0
00000

frame number , valid—invalid bit
. 3| paget

4| page2

7| page3

10,468 8| pages

page table

12,287
9| pages

page n

Operating System Concepts 920

Operating System Concepts 030 Silberschatz, Galvin and Gagne ©2002 |

Page Table Structure

Hierarchical Paging
Hashed Page Tables

Inverted Page Tables

Operating System Concepts 931 Silberschatz, Galvin and Gagne ©2002

Hierarchical Page Tables

Break up the logical address space into multiple page
. tables.

A simple technique is a two-level page table.

Operating System Concepts 932 Silberschatz, Galvin and Gagne ©2002 LS

Two-Level Paging Example

A logical address (on 32-bit machine with 4K page size) is
divided into:

a page number consisting of 20 bits.

a page offset consisting of 12 bits.
Since the page table is paged, the page number is further
divided into:

a 10-bit page number.

a 10-bit page offset.
Thus, a logical address is as follows:

page number page offset

Lo o]

10 10 12

where p; is an index into the outer page table, and p, is the
displacement within the page of the outer page table.

Operating System Concepts 933

Two-Level Page-Table Scheme

0

7]

. | » 1 T
/ 2 100
500 ><'

\\

100 o]

708 |
T
: 708
outer-page 99 o0

table

900
|
page of 929

page table
page table
memor \
-:‘\"
Operating System Concepts 934 Silberschatz, Galvin and Gagne ©2002 [.&0 &

=4

Address-Translation Scheme

Address-translation scheme for a two-level 32-bit paging
. architecture

logical address

o

X

ouler-page A
table

page of
page lable

Operating System Concepts 935

Hashed Page Tables

Common in address spaces > 32 bits.

The virtual page number is hashed into a page table. This
page table contains a chain of elements hashing to the
same location.

Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.

Operating System Concepts 036 Silberschatz, Galvin and Gagne ©2002 |

Hashed Page Table

physical
logical address address
[p]d] [rTd}

physical
memory

hash table

Operating System Concepts 937 Silberschatz, Galvin and Gagne ©2002

Inverted Page Table

One entry for each real page of memory.

. - Entry consists of the virtual address of the page stored in
that real memory location, with information about the
process that owns that page.

Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs.

Use hash table to limit the search to one
few page-table entries.

or at most a

Operating System Concepts 938

e

=
Siberschatz, Gain and Gagne ©2002 [&8

=9

Inverted Page Table Architecture

Shared Pages

Shared code
. . - One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).
logical physical Shared code must appear in same location in the logical
- address address Sl address space of all processes.
memory
Private code and data
Each process keeps a separate copy of the code and data.
search The pages for the private code and data can appear
o[P anywhere in the logical address space.
page table
Operating System Concepts 939 Operating System Concepts 9.40 Silberschatz, Galvin and Gagne ©2002 |
Shared Pages Example Segmentation
ed1 0 .
Memory-management scheme that supports user view of
ed2 1| data1 memory.
- . 5| dams A program is a collection of segments. A segment is a logical
1] unit such as:
data1 | page table 3| edt main program,
out) ed1
process P, 4] ed2 procedure,
ed2 function,
5
s mgthod,
6| ed3 object,
caa? | page ‘;:"9 o local variables, global variables,
Gl process P, . common block,
ed2 stack,
f— 9 symbol table, arrays
10
data 3 page table
for Py
process P,
H
Operating System Concepts. 9.41 Silberschatz, Galvin and Gagne ©2002 !'" Operating System Concepts. 9.42

User s View of a Program

subroutine stack

symbol
table

main
program

logical address space

Operating System Concepts 9.43 Silberschatz, Galvin and Gagne ©2002

Logical View of Segmentation

user space

physical memory space

Operating System Concepts 9.44 Silberschatz, Galvin and Gagne ©2002 LS

Segmentation Architecture

Logical address consists of a two tuple:
- <segment-number, offset>,

Segment table maps two-dimensional physical
addresses; each table entry has:

base contains the starting physical address where the

segments reside in memory.

limit specifies the length of the segment.
Segment-table base register (STBR) points to the
segment table s location in memory.
Segment-table length register (STLR) indicates number of
segments used by a program;

segment number s is legal if s < STLR.

Operating System Concepts 9.5

Segmentation Architecture (Cont.)

Relocation.
. dynamic
by segment table

Sharing.
shared segments
same segment number

Allocation.
first fit/best fit
external fragmentation

Operating System Concepts 9.46 Silberschatz, Galvin and Gagne ©2002 |

[

7

Segmentation Architecture (Cont.)

Protection. With each entry in segment table associate:

- validation bit = 0 = illegal segment
read/write/execute privileges

Protection bits associated with segments; code sharing

occurs at segment level.

Since segments vary in length, memory allocation is a

dynamic storage-allocation problem.

A segmentation example is shown in the following

diagram

Operating System Concepts 9.47

Segmentation Hardware

——> s

—1_limit_| base

segment

table
CPU t» s
<
no
trap; addressing error physical memory

Operating System Concepts 0.8 Silberschatz, Galvin and Gagne ©2002 |

Example of Segmentation

subroutine
1400
’/ segment 3 \\ segment 0
i = 2400
symbol
segment 0 table
iimit | base
Sart segment 4 0| 1000 | 1400
| 1| 400 [€300 | 320
| main 2| 400 | 4300
program 3| 100 | 3200 D
4| 1000 | 4700
N % segmenttable 4300 — |
“segment 1 segment2 . o
- z 4700
logical address space segment 4
5700
segment |
physical memory

Operating System Concepts 9.49 Silberschatz, Galvin and Gagne ©2002

Sharing of Segments

adtor
segment o
as062
a1 ¢ [[bese
o[25256 | 43062
et ¢ 1| aaes | s edtor
g sagmen abla
- process P,
ical mornor ssate
i cata 1
process Py iy
“
00003
adtor s
ogsea
segmento
. it | base vrr—
o[25286 | 43062 physical memory
segment1 /1 |_ees0 | aoocs
g segmentlble
togieal memory
Operating System Concepts 050

Segmentation with Paging MULTICS

The MULTICS system solved problems of external
. fragmentation and lengthy search times by paging the
segments.

Solution differs from pure segmentation in that the
segment-table entry contains not the base address of the
segment, but rather the base address of a page table for
this segment.

\

Operating System Concepts 951

MULTICS Address Translation Scheme

[foaree saaaes
I I =
Sogrment | page-iaale
longth | bass
searientable
ster
momary
physical
address
Page table for
cegments
Operating System Concepts 9.52

Segmentation with Paging Intel 386

“As shown in the following diagram, the Intel 386 uses
segmentation with paging for memory management with a
two-level paging scheme.

Operating System Concepts 953

Intel 30386 Address Translation

[e
L. s oo

dieciory _page ofisel

linear addless pago frame

physical adoress

il

‘paga table entry

page directory page table

diractory aniry

page directory

base register

Operating System Concepts 954

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

