

Università degli Studi di Cassino

Corso di Calcolatori Elettronici I

Algebra di Boole Reti logiche

Anno Accademico 2007/2008 Francesco Tortorella

Le reti logiche

- Tutte le informazioni trattate finora sono codificate tramite stringhe di bit
- Le elaborazioni da compiere su tali informazioni consistono nel costruire, a partire da determinate configurazioni di bit, altre configurazioni che, nella codifica prefissata, rappresentano i risultati richiesti
- I circuiti elettronici che realizzano tali operazioni sono detti circuiti di commutazione (switching circuits) o reti logiche

Progetto di reti logiche

- Il progetto delle reti logiche si svolge in primo luogo tenendo conto delle funzionalità del circuito, indipendentemente dalla realizzazione fisica (progetto logico)
- Ciò consente:
 - di prescindere dai particolari realizzativi
 - di risolvere a livello logico eventuali problemi implementativi
- Strumento fondamentale: l'algebra di Boole

L'algebra di Boole

- Consente di descrivere in forma algebrica le funzioni dei circuiti
- Fornisce dei metodi per l'analisi e la sintesi (a livello logico) dei circuiti
- Tramite l'algebra di Boole si stabilisce una corrispondenza biunivoca tra
 - operazioni dell'algebra e componenti elementari
 - espressioni algebriche e circuiti

L'algebra di Boole

- Nel progetto delle reti logiche si impiega un sistema algebrico in cui ogni variabile può assumere solo uno tra due valori: 0 e 1
- Sulle variabili si applicano le operazioni:
 - prodotto logico (*) o AND
 - somma logica (+) o OR
 - negazione (!) o NOT

Operazioni binarie

Operazioni unaria

AND	OR	NOT
0*0=0	0+0=0	!0=1
0*1=0	0+1=1	!1=0
1*0=0	1+0=1	
1*1=1	1+1=1	

Proprietà dell'algebra di Boole

Commutativa: a+b=b+a a*b=b*a

• Associativa: (a+b)+c=a+(b+c) (a*b)*c=a*(b*c)

Idempotenza: (a+a)=a (a*a)=a

Assorbimento: a+(a*b)=aa*(a+b)=a

• Distributiva: $a^*(b+c)=a^*b+a^*c$ $a+(b^*c)=(a+b)^*(a+c)$

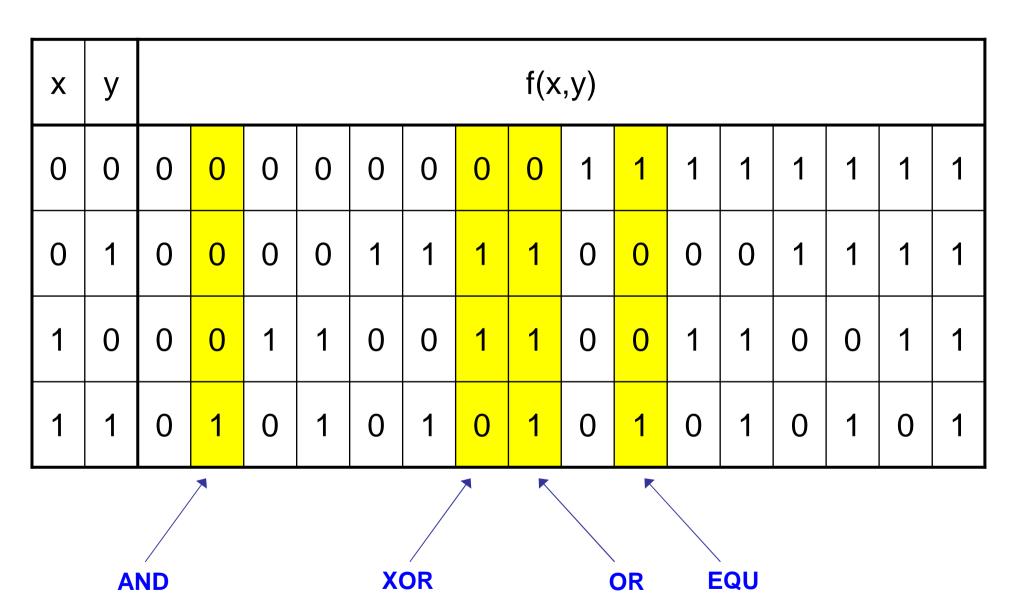
• Min e max: a*0=0 a+1=1

Elem.to neutro: a+0=aa*1=a

• Complemento: $a^*(!a)=0$ a+(!a)=1

• De Morgan: !(a+b)=!a*!b !(a*b)=!a+!b

Funzioni logiche


 Una variabile può essere definita come funzione di altre variabili:

```
w=f(x,y,z)
```

Si dicono funzioni logiche elementari le funzioni:

```
z=x*y (funzione AND)
z=x+y (funzione OR)
y=!x (funzione NOT)
```

• Quante sono le possibili funzioni in 2 variabili ?

Calcolatorí Elettronicí I Lezione 9 - 8/19

Funzioni ed espressioni

Una funzione logica può essere definita, oltre che in forma tabellare (tabella di verità), tramite espressioni algebriche

Esempio:

$$f = x+y^*!z+!y^*z$$

 $f = x^*!z+x^*y+y^*!z+!y^*z$

Espressioni equivalenti

Come passare dall'una all'altra?

X	у	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Letterali, mintermini, maxtermini

Letterale: variabile affermata o negata

Termine: prodotto o somma di letterali

Mintermine: prodotto di letterali di tutte le

variabili di una certa funzione

Maxtermine: somma di letterali di tutte le

variabili di una certa funzione

Esempio

Mintermine: x!yz

Maxtermine: !x+y+z

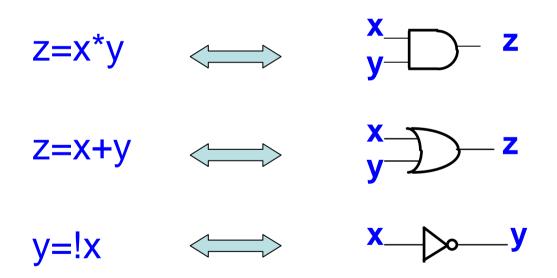
X	у	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Forme canoniche

Una funzione definita tramite tabella di verità può essere espressa algebricamente in due diverse forme canoniche:

Somma di mintermini

$$f = |x|yz+|xy|z+x|y|z+x|yz+xy|z+xyz$$

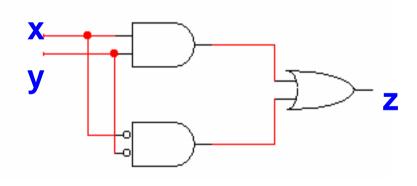

Prodotto di maxtermini

$$f = (x+y+z)(x+!y+!z)$$

Х	у	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Equivalenza con i circuiti logici

Esiste una equivalenza tra le funzioni logiche e le porte elementari delle reti logiche (Shannon)



Equivalenza con i circuiti logici

L'equivalenza si estende alle espressioni ed ai circuiti

Х	у	Z
0	0	1
0	1	0
1	0	0
1	1	1

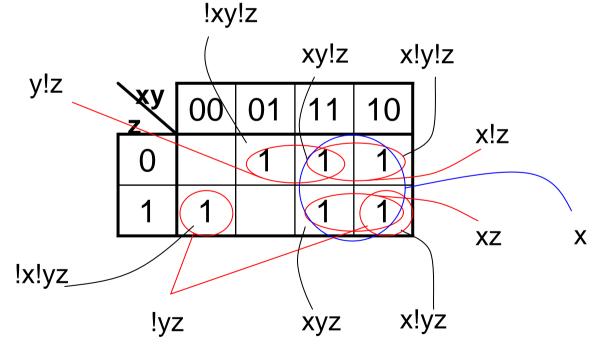
$$z = xy+!x!y$$

Minimizzazione delle funzioni logiche

- Ad una funzione descritta tramite tabella di verità possono essere associate più espressioni algebriche. Quale scegliere?
- Vista l'equivalenza con i circuiti, conviene scegliere l'espressione corrispondente al circuito a minimo costo (→ minimizzazione)
- Il costo può esprimersi in base a:
 - numero di porte
 - numero di ingressi
 - eterogeneità delle porte

Minimizzazione delle funzioni logiche

 I metodi per la minimizzazione si basano sulle proprietà dell'algebra di Boole.


Esempio:

$$f = !x!yz+!xy!z+x!y!z+xy!z+xyz$$

Calcolatorí Elettronici I Lezione 9 - 15/19

Le mappe di Karnaugh

- Due mintermini si dicono adiacenti se differiscono in un solo letterale.
- Le mappe di Karnaugh sono una rappresentazione grafica che evidenzia l'adiacenza tra mintermini

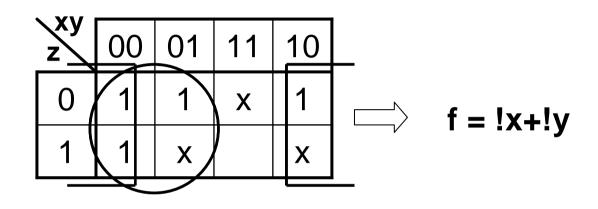
Calcolatorí Elettronici I Lezione 9 - 16/19

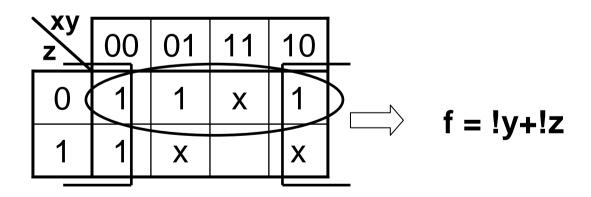
Х	у	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Forma minima: f = x+!yz+y!z

Funzioni non completamente specificate

Si verificano quando ci sono combinazioni delle variabili di ingresso che non sono possibili o, in corrispondenza delle quali, il valore di uscita non è influente.


•	xy z	00	01	11	10
	0	1	1	X	1
	1	1	X		X


Ai fini del progetto, i valori don't care possono essere specificati in modo da minimizzare l'espressione della funzione

X	у	Z	f
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	Х
1	0	0	1
1	0	1	X
1	1	0	Х
1	1	1	0

Funzioni non completamente specificate

Le soluzioni ottenibili sono diverse. La scelta va fatta sulla base delle specifiche del progetto e sulla convenienza complessiva

Calcolatorí Elettronicí I Lezione 9 - 18/19

Fasi del progetto di una rete logica

- 1. Definizione delle specifiche
 - Identificazione delle variabili in ingresso e in uscita
- 2. Definizione della tabella di verità della funzione
- 3. Minimizzazione
- 4. Definizione del circuito