
MipsIt—A Simulation and Development Environment Using
Animation for Computer Architecture Education

Mats Brorsson

Department of Microelectronics and Information Technology,
KTH, Royal Institute of Technology

Electrum 229, SE-164 40 Kista, Sweden
email: Mats.Brorsson@imit.kth.se

Abstract
Computer animation is a tool which nowadays is used in
more and more fields. In this paper we describe the use of
computer animation to support the learning of computer
organization itself. MipsIt is a system consisting of a
software development environment, a system and cache
simulator and a highly flexible microarchitecture simulator
used for pipeline studies. It has been in use for several years
now and constitutes an important tool in the education at
Lund University and KTH, Royal Institute of Technology in
Sweden.

1. Introduction
In order to learn computer architecture and systems you
need to learn how to master abstractions. A computer system
is one layer of abstraction on top of the other. At one end you
have digital electronics, which in itself can be seen as sev-
eral layers, and at the other you have complex applications
using perhaps techniques such as polymorphic inheritance
which needs to be resolved in run-time.

For students studying computer organization and archi-
tecture, these abstractions are often confusing as they are not
always that distinct. Furthermore, given the high level of
integration in modern computers, it is also quite difficult for
students to get a good understanding of what is happening
deep down in the black centipedes on the motherboard.

At Lund University, and now also at KTH, Royal Institute
of Technology, both in Sweden, I have taken part in the
development of a set of courses in computer systems, orga-
nization and architecture in which laboratory exercises and
simulation tool support are used extensively to support
learning. In this paper I describe some of the simulation
tools that were developed during this process.

The MipsIt set of tools is part of a bigger laboratory exer-
cise environment with a hardware platform, software devel-
opment tools and a number of simulators. Many of the
simulators support animation as a support for the students to
understand the works of a relatively complex structure.

I first describe some of the trade-offs between hardware
platforms and simulators that we considered in developing

our exercise material. Next I present an overview of the soft-
ware system of MipsIt followed by a more detailed descrip-
tion of the animated simulators in sections 4 and 5.

2. Hardware vs. Simulation
I think that most instructors would agree with me that exer-
cises where the students get real hands-on experience with
digital electronics, assembly level programming, data repre-
sentation etc. are crucial for the students’ learning. Further-
more, it is my firm belief that students must touch, feel and
smell1 the real hardware in a computer organization course.
Some universities let the students study computers using
only simulated hardware. In my experience, this might lead
to a confusion as to what is really happening. Is there really
another machine inside this PC, workstation or whatever is
used as simulation host?

Therefore, we use real, naked hardware–naked in the
sense that there is no operating system on the hardware–to
aid the students in understanding computer systems. The
current system consists of a development board with a MIPS
processor, some memory and a few simple I/O devices [2].
Unfortunately, this does not entirely solve the problem of
abstraction. When you connect a development board to a
host computer through a terminal program this might be a
problem as well. I have had students that answer the ques-
tion on where the program is executed by pointing to the
window on the host computer screen instead of on the pro-
cessor chip on the board on the desk beside the computer. It
is anyway less abstract than if the program executes on a
simulator and it is possible to remove the cable between the
development board and the host computer and verify that the
program still executes with simple I/O devices on the board.

This works well for students to learn about data represen-
tation, assembly level programming, simple I/O structures
(polling and interrupts) and general low-level computer sys-
tem design. It is, however, not well suited to study cache
memories or processor hardware design as these structures
are buried deep inside the processor.

1. Hopefully they smell burned electronics before it breaks!

We have previously let the students build simple micro-
programmed processors using discrete components during
laboratory exercises. Even though this has been very effec-
tive for the understanding of how simple hardware can be
organized to execute instructions, we have abandoned it for
the first compulsory course.1 The simplifications that we
needed to make in the instruction set that we could imple-
ment were to big in order to relate to modern computer
instruction set architectures and it was not possible to do off-
line development with the hardware used.

So how do we then support the study of hardware struc-
tures such as cache memories and pipeline design when we
cannot build hardware for it. This is where animated simula-
tion fits in. We have also resorted to simulation of the devel-
opment board to let the students work at home preparing for
lab. exercises and to support distance courses.

I have during the course of being a university teacher
found that many students have difficulties of really under-
standing how cache memories work. They can easily under-
stand the concept, but when it comes to how you should
build the hardware to actually implement the concept, it
becomes difficult. The concept of pipelining–which is the
dominant implementation method of processors today–has
similar characteristics. It is easy to understand in principle,
but when it comes to the actual hardware design, it becomes
tricky. This was the motivation to why we developed the ani-
mated simulators described in this paper.

3. The MipsIt system
The MipsIt system consists of a development environment,
a hardware platform and a series of simulators. The topic of
this paper is mainly the animation support in the simulators
for cache memory and pipeline simulation, but for complete-
ness I also describe the other parts. All software developed
for the MipsIt system are targeted for the Windows (95-XP)
platform as host machine.

3.1 Development environment
The MipsIt development environment is used to develop
software for the hardware platform as well as for the various
simulators. It targets the development board shown in sec-
tion 3.2 but the same binary can be used to execute on the
various simulators as well. Figure 1 shows an example of
how the development environment might look for a software
project with mixed C and assembler files.

The compiler, linker and other tools are standard tools in
the gcc tool chain configured for cross-compilation to a
MIPS target platform. What we developed was the graphical
user interface mimicking the MS Visual DevStudio as a

front-end to gcc and which also replaces Makefile by han-
dling projects of source codes and their dependences.

Although not tested, the same front-end should be possi-
ble to use with any gcc cross-compiler. The system is highly
configurable and there is also an option to run an arbitrary
command before or after linking. We use this feature to cre-
ate an S-record file that can be used for downloading to the
development board. We later modified the on-board monitor
to use the ecoff-file produced by the compiler/linker.

3.2 Hardware
Figure 2 shows a photograph of the development board from
IDT that is in use at Lund University [2]. It contains an IDT
36100 micro controller with a MIPS32 ISA processor
core [3]. We deliberately chose the MIPS architecture as our
instruction ISA because of its simplicity.

Another advantage of the MIPS ISA at the time was also
that it is used in the textbooks of Hennessy and Patterson [1,
4]. These textbooks are used at Lund University as well as
in many other universities and it makes it easier for the stu-
dents if they can relate the laboratory exercise material to the
textbook directly. The abstractions needed are difficult
enough anyway.

The evaluation board itself, as shown in figure 2, contains
the processor (chip-select logic, timers and two serial port
UARTs are also integrated on-chip), some SRAM, slots for
DRAM (not used in our configuration) and EEPROM which
contains a simple monitor. The monitor contains some rou-
tines from libc which can be taken advantage of for small
footprint C programs. The routines include partial function-
ality of printf. There are also routines to install normal C
functions as interrupt routines.

All micro controller signals also appear on the edge con-
nectors of the development board. We developed a simple
daughter board containing one eight-bit and one 16-bit par-
allel bi-directional I/O port. It also contains a simple inter-
rupt unit with three interrupt sources (two push-buttons and

1. The course is given in a 4.5 year programme leading to an
M.Sc. in computer science, electrical engineering or informa-
tion technology engineering.

Figure 1. The development environment is
inspired by Visual DevStudio.

one adjustable pulse source) that also could be read as a six-
bit parallel input port. Three of the bits contain the current
status of the three input sources and the other three are
latched versions of the same input. These bits retain their
value until reset by writing (any value) to the port.

3.3 The simulators
The third part of the MipsIt environment is a set of simula-
tors. There is one system simulator which mimics the evalu-
ation board as faithfully as possible. While developing this
simulator it was our goal to be able to execute any binary
code developed for the target hardware platform. We there-
fore have to simulate the on-board monitor and all I/O
devices, including on-chip timers.

The full code compatibility has been achieved in the sys-
tem simulator which is described in section 4. This simulator
also contains an animated cache simulator. We also wanted
to use simulation for microprocessor implementation stud-
ies. This resulted in a general micro architecture simulator
which is controlled by a simple hardware description lan-
guage and animation control so that many different micro-
processor implementations can be illustrated. This simulator
is described in section 5.

4. The system simulator

4.1 Overview
Figure 3 shows the system simulator with a few of its win-
dows open. The top left window shows a simplified view of
the entire system: CPU, instruction and data caches, some

RAM, a console window and some I/O devices. The window
at bottom left shows the register contents of the CPU. The
top right window shows the eight-bit parallel I/O device
which consists of eight LEDs and eight binary switches. Just
as what we have in hardware. The 16-bit parallel I/O-port is
the only one from the hardware that is not implemented in
the simulator. The bottom right window shows the simple
interrupt sources. Two push-buttons and an adjustable pulse
timer.

The main reason for developing this simulator is because
it simplifies for the students to study computer organization
on their own, at home. Most students have access to PCs
with Windows and it is therefore easy for them to download
the simulators and development environment to start work
on their own.

However, as we designed the laboratory exercises, we
found that the simulator could actually be used also in the
class-room. Figure 4 shows the memory view in the simula-
tor. The memory addresses are shown to the left and the con-
tents is shown to the right as hexadecimal numbers and an
interpretation. In the current view the interpretation is the
disassembler view but other possible views are interpreta-
tions as unsigned integers, signed integers, single precision
floating point numbers and ASCII characters.

The dot to the left in the memory view shows a break
point and the line, also to the left, signifies that these instruc-
tions are currently in the instruction cache. The darker line
shows the current instruction being simulated.

With this view, the simulator became a powerful tool to
study instruction execution and the effect each instruction
had on the registers etc. Since the MIPS architecture does
not have vectored interrupts, it became cumbersome to sin-
gle-step interrupt routines on the hardware and we therefore
used the simulator to study interrupt routines in this detail.
The students could also experiment with instruction coding,
making hexadecimal instruction codes by hand, entering
them in the memory and immediately see if they had coded
the instruction correctly. Floating point number coding
could be studied in the same way.

4.2 Cache simulator
Even with all the benefits as described above, these were not
the only purposes for developing the simulator. The major
driving force was to introduce animation to aid the students
to really understand the inner workings of cache memories.
We used the figures of a textbook as an inspiration as how to
present the caches graphically [4].

Figure 5 shows the cache view in the simulator. It shows
the current configuration of the data cache. The data and the
instruction caches can be configured independently. It
shows the entire cache contents with both tag and data store.
It also shows how the address presented by the processor is
divided into different fields for indexing, word select and tag

Figure 2. The IDT development board used in the
exercises.

Figure 3. The system simulator with CPU register and I/O-device windows open.

Figure 4. The memory view in the simulator.

Figure 5. The animated cache view.

check. The students can single-step their programs and fol-
low the cache access for every memory reference and there-
fore gain a deeper understanding of how the cache works.

The simulator also keeps some simple statistics, as shown
at the bottom right in the figure. This can be used to compare
different cache settings for more longer-running programs.

Memory access penalty can also be configured and it is
thereby possible to perform direct comparison with the hard-
ware which contain small instruction and data caches.

5. The pipeline simulator
At Lund University, we had a long experience of using ani-
mation and graphical representation of pipeline
execution [5]. We wanted to make use of this experience, but
retain the compatibility with the hardware that we developed
for the system simulator as described previously. Another
design goal was to make a flexible design that could be run
by students at home on their PCs. The existing software was
for Sun/Solaris and neither very portable nor flexible.

5.1 PipeS and PipeXL
Instead of having a hardwired pipeline design in the simula-
tor software, we developed a flexible simulation shell which
could be loaded with different micro architecture implemen-
tations. The simulator shell can be used to load programs
into memory, to drive the simulated clock signal and to mon-

itor register and memory contents, as in the previously
described simulator. However, when the program starts, it
contains no description of the simulator hardware. This has
to be loaded from a file which describes the micro architec-
ture in a hardware description language (see next section).
Figure 6 shows an example in which a simple five stage
pipeline without forwarding is shown.

The students can load the memory with a program, just as
before, and starts to single step the execution. As the pro-
gram advances, the pipeline graphics is changed. Muxes are
set in the positions needed for execution, data values on
buses and inputs are shown and the instruction currently
executing in each pipeline stage is shown at the top.

Our experience is that this tool has been tremendously
powerful to convey the concept of pipelining to the students.
The way that the pipeline is graphically represented is an
invention of a student at Lund University in the late 80s but
was independently later discovered for use in major text-
books [4, 6].

Figure 7 shows another example of a micro architecture
implementation. This is much more complex and complete.
In addition to what is present in figure 6, it also contains the
control signals, data forwarding and hazard control. We will
now see how we can represent different pipeline structures
to be used in the simulator.

Figure 6. An example of a simple pipeline simulator view. The simulator is only a
shell which can be loaded with arbitrary pipeline structures.

5.2 Some Hardware Description Language
The micro architectural structure of the processor is
described in a simple hardware description language which
is described here shortly. The pictures shown in figures 6
and 7 are not derived from this language but simple bitmap
files that are shown in the window.

The original aim was to use a subset of VHDL as descrip-
tion language to be able to leverage on the body of text writ-
ten about this language. However, it turned to be
cumbersome to parse and instead we developed a simple
object oriented HDL where each component is a class which
can be instantiated to an object and the inputs and outputs of
an object are connected to the inputs and outputs of other
objects. Almost any synchronous hardware structure can be
expressed in this language. There are also hooks to the sim-
ulation framework in the language. Most notably for the
clock signal, memory accesses and to the register and mem-
ory views of the simulator.

5.3 Components
Below is the code for a simple component; the two-input
mux:

class CMux2
{
in In0

in In1
in Control:1
out Out

script
function OnChange()
{

if (Control.Get()==0)
Out.Set(In0.Get());

else
Out.Set(In1.Get());

}

Out.Set(0);
end_script

event ALL OnChange()
}

At first a class description is used to give the component
a name. Next the interface of the component is specified.
The default width of inputs and outputs is 32 bits. In this
case only the control signal deviates in that it is specified as
one bit only.

Then follows a script which describes the behavior of the
component. The function OnChange is executed whenever

Figure 7. A more complex pipeline structured using the same simulator shell.

any of the input signals changes state as described by the last
statement in the component description. Input signal values
are retrieved by accessing a member function Get() and
similarly output signal values are set by the member func-
tion Set(x). The last lines of the script can be used to set
the initial state of the output signals.

A mux is a combinational component and does not con-
tain any state. If any of the input changes, the output is
immediately changed also. In contrast, the program counter
is a simple component which is clocked. As shown by the
example text below, the PC is clocked by a simulated two-
phase clock.

// this is the Program Counter
class CPC {
in Ph0:1
in Ph1:1
in In
out Out

script
var rPC = 0;

function OnPh0() {
rPC = In.Get();

}

function OnPh1() {
Out.Set(rPC);

}
end_script

event Ph0 OnPh0()
event Ph1 OnPh1()

}

The signals Ph0 and Ph1 are driven by a clock object and
are used to derive the two-phase clock. The value of the PC
is stored in an internal variable (rPC) which is read from the
input on one clock phase and output on the second clock
phase.

5.4 Connecting components together
When the entire micro architecture has been suitable broken
down in components, clocked or not, they can be connected
together. The following piece of code shows the connections
for the ID-stage in the simple pipeline of figure 6.

// components:

object CPC PC
object CInstrMem InstrMem
object CMux2 PcMux
object CiAdd4 IfAdd4

object CRegIfId RegIfId

// Net list:
// to PC
connect PcMux.Out PC.In
// to InstrMem
connect PC.Out InstrMem.Address
// To pc+4 thing
connect PC.Out IfAdd4.In
// to the pipeline register
connect InstrMem.ReadData

RegIfId.in_Instruction
connect IfAdd4.Out RegIfId.in_PC
// to the pc mux
// (only connections from this stage
// are done here)
connect IfAdd4.Out PcMux.In0
// connect the clock
connect clk.Ph0 RegIfId.Ph0
connect clk.Ph1 RegIfId.Ph1
connect clk.Ph0 PC.Ph0
connect clk.Ph1 PC.Ph1

// and now some probes:
probe InstrMem.ReadData 173 393 16 8 1
probe PC.Out 70 355 16 8 1
probe IfAdd4.Out 148 171 16 8 1
probe PcMux.Out 14 355 16 8 1
probe InstrMem.ReadData 2 4 16 30 2

Note how the components first are defined and then con-
nected together in simple connect-statements. At the end,
graphical probes are defined. It is these that makes up the
animation in the final simulation picture. After the key word
probe, a signal name is given. This is the signal to monitor.
The next two arguments are the x- and y-coordinates of
where the probe is to be shown in the pipeline picture. The
third argument is the number format for the probe data, the
fourth argument is the number of digits to use, and the final
argument is the direction of the probe: 0 for horizontal and 1
for vertical. The last probe is different. It is used to show the
assembler format of the instruction read from memory. The
mux direction is also a probe, but since the mux in this pipe-
line is controlled in the EX-stage, the probe is also defined
there.

We have not yet let students define their own pipeline
designs. What we have done is to provide them with a skel-
eton and let them work out the instruction deciding, hazard
control, and forwarding unit for themselves. It has been
amazingly simple for them to iron out these details, once
they got the hang of pipelining in the first place.

6. Conclusion
The software described in this paper has been used in com-
puter organization and architecture education at Lund Uni-
versity and at KTH for several years now. It is now mature
enough that we feel it is time to share our experiences which
have been very good. We have received quite encouraging
feedback from students who both find it useful to work with
laboratory exercises at home and who appreciate the graph-
ical animation in the user interface.

Acknowledgements
The work reported here was performed while the author was
affiliated with the department of Information Technology at
Lund University. The laboratory exercises were made
together with Jan Eric Larsson. Coauthors of the software
were: Ola Bergqvist, Georg Fischer, Mats Brorsson, Martin
Andersson, Joakim Lindfors and Tobias Harms.

A binary version of the MipsIt package for Windows 95-
xp with suitable exercises can be retrieved for educational
and personal use from the following web site:
http://www.embe.nu/mipsit.

References
[1] J. L. Hennessy and D. A. Patterson, Computer Architecture —

A Quantitative Approach, 3rd ed., Morgan Kaufmann
Publishers, 2002.

[2] Integrated Device Technology, Inc., 79S361 Evaluation
board: Hardware User’s Manual, ver 2.0, Sept. 1996.

[3] Integrated Device Technology, Inc., IDT79RC36100, Highly
Integrated RISController: Hardware User’s Manual, ver 2.1,
Aug. 1998.

[4] D. A. Patterson and J. L. Hennessy, Computer Organization
and Design: The Hardware/Software Interface, 2nd Ed.,
Morgan Kaufmann Publishers, 1997.

[5] P. Stenstrom, H. Nilsson, and J. Skeppstedt, Using Graphics
and Animation to Visualize Instruction Pipelining and its
Hazards, in Proceedings of the 1993 SCS Western Simulation
Multiconference on Simulation in Engineering Education,
1993, pp. 130-135.

[6] B. Werner, K. Ranerup, B. Breidegard, G. Jennings, and L.
Philipson, Werner Diagrams - Visual Aid for Design of
Synchronous Systems, Technical report, Department of
Computer Engineering, Lund University, November 1992.

