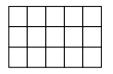
Che cosa si intende per INFORMATICA?

- Scienza della rappresentazione e dell'elaborazione dell'informazione
 - L'informazione è il concetto principale dell'Informatica.
 - L'elaborazione dell'informazione avviene in maniera sistematica e rigorosa e quindi può essere automatizzata

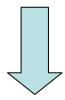
Che cosa si intende per INFORMATICA?

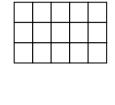

- Scienza dell'astrazione
 - creare il giusto modello per un problema e individuare le tecniche appropriate per risolverlo in modo automatico
 - L'obiettivo è quello di sostituire una situazione del mondo reale complessa e particolareggiata con un modello comprensibile e privo di dettagli inessenziali, all'interno del quale si possa risolvere il problema

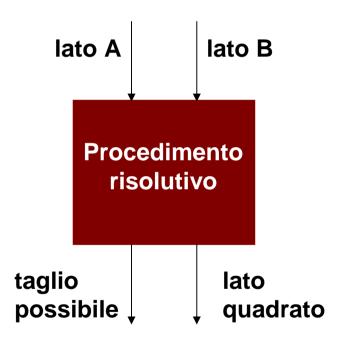
Che cosa si intende per INFORMATICA?

Mettiamo insieme le due definizioni:

Obiettivo dell'Informatica è creare delle astrazioni di problemi del mondo reale che possano essere rappresentate ed elaborate all'interno di un calcolatore al fine di eseguire dei procedimenti risolutivi in modo automatico


Esempio


- Si debba dividere una lastra di marmo di Carrara, rettangolare e di dimensioni AxB in tanti quadrati uguali avente il lato della maggiore lunghezza possibile e senza generare sfrido. Si supponga che le dimensioni debbano essere numeri interi.
- Verificare se ciò è possibile, date le dimensioni, e, in caso positivo, fornire la lunghezza del lato del quadrato.

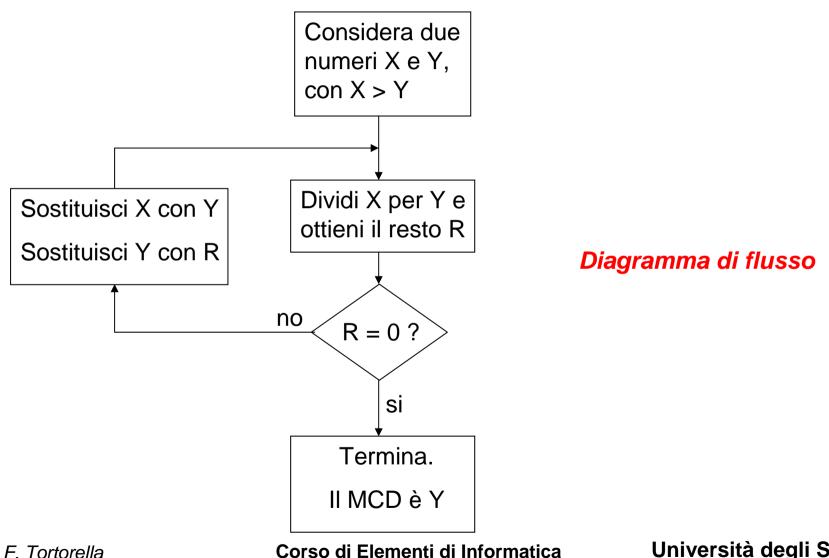

Esempio

- Quali sono gli aspetti importanti del problema?
- Quali sono i dati a disposizione ?
- Quali sono i dati richiesti ?

 Come si può ridefinire in forma astratta il problema ?

Ridefiniamo il problema

- Calcolare il Massimo Comune Divisore (MCD) dei due numeri interi A e B
- Se il MCD è diverso da 1, il taglio è possibile e la misura del quadrato è data dal MCD.
- Se il MCD è uguale a 1, il taglio non è possibile


Come eseguire il calcolo in modo automatico ?

E' necessario un procedimento <u>sistematico</u>, costituito da un insieme <u>finito</u> di operazioni, ognuna delle quali sia <u>precisa</u> (non ambigua) ed <u>eseguibile</u>, da applicare ai <u>dati in ingresso</u> perché possa fornire dei <u>dati in uscita</u>.

E' necessario un algoritmo

Algoritmo di Euclide (ca. 300 a.C.)

Corso di Elementi di Informatica 2007/2008

Università degli Studi di Cassino

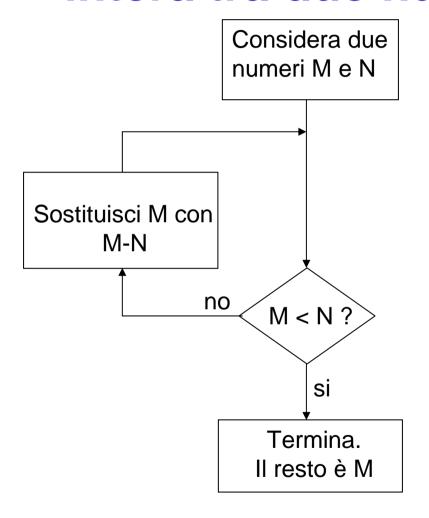
Esempio

MCD di 1365 e 3654

X	Υ	R	MCD
3654	1365	924	
1365	924	441	
924	441	42	
441	42	21	
42	21	0	21

MCD di 8351 e 772

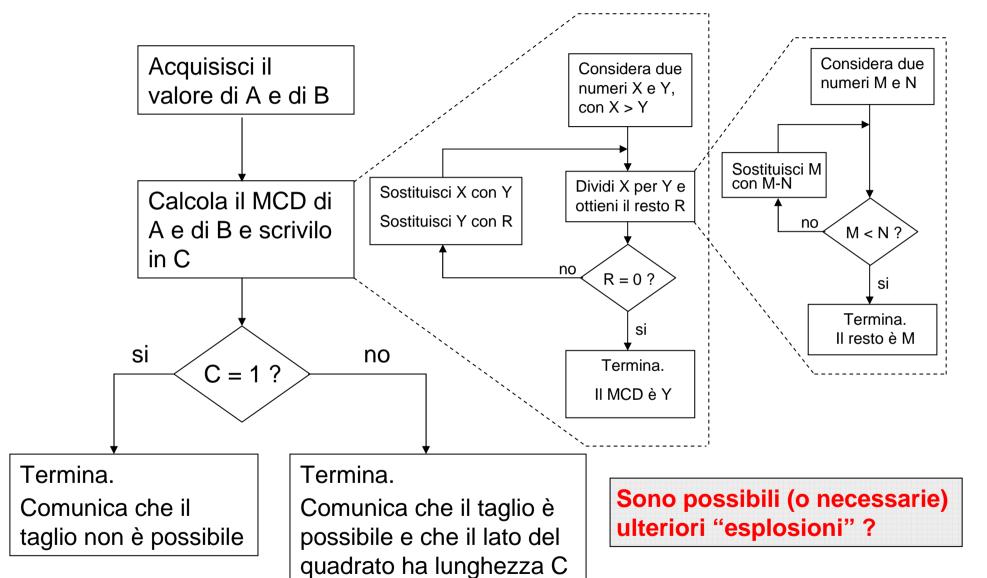
X	Y	R	MCD
8351	772	631	
772	631	141	
631	141	67	
141	67	7	
67	7	4	
7	4	3	
4	3	1	
3	1	0	1


Alcune considerazioni

- L'algoritmo è del tutto generale, ma, in qualsiasi caso specifico, il procedimento avrà termine e fornirà una risposta precisa in un numero finito di passi.
- A ogni passo, è perfettamente chiaro quale operazione si debba compiere e anche la decisione circa il momento in cui il procedimento si debba ritenere concluso è perfettamente definita.
- La descrizione dell'intero procedimento è presentata in termini finiti, anche se può essere applicata a numeri naturali di dimensioni illimitate.
- Il procedimento descritto assume che sia noto come eseguire particolari operazioni quali il calcolo del resto della divisione intera tra due numeri naturali. E se così non fosse?

Sarebbe necessario un opportuno algoritmo

Calcolo del resto della divisione intera tra due numeri naturali M ed N



M	N	resto
67	20	
47	20	
27	20	
7	20	7

M	N	resto
8351	772	
7579	772	
6807	772	
6035	772	
5263	772	
4491	772	
3719	772	
2947	772	
2175	772	
1403	772	
631	772	631

Come si modifica l'algoritmo per ottenere anche il quoziente ?

Mettiamo tutto insieme

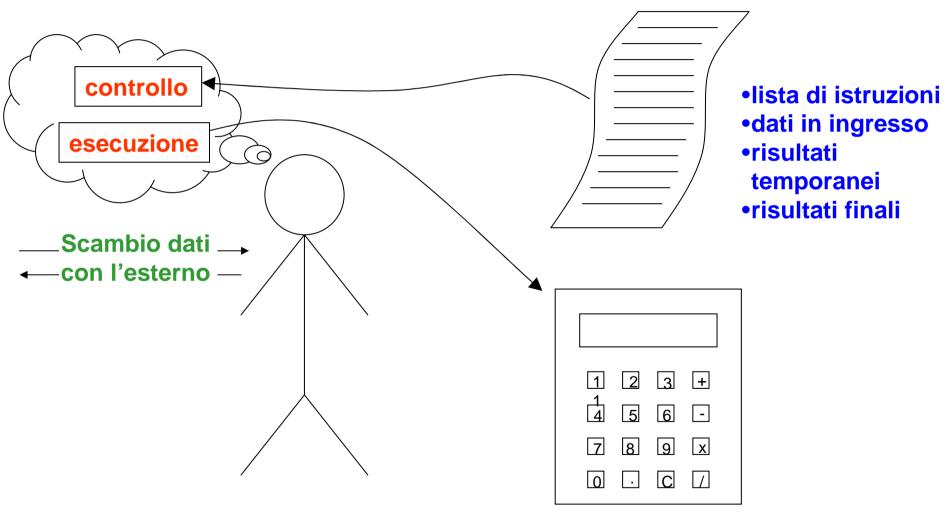
F. Tortorella

Corso di Elementi di Informatica 2007/2008

Università degli Studi di Cassino

Chi esegue le operazioni?

Una volta definito, l'algoritmo deve essere sottoposto ad un esecutore.

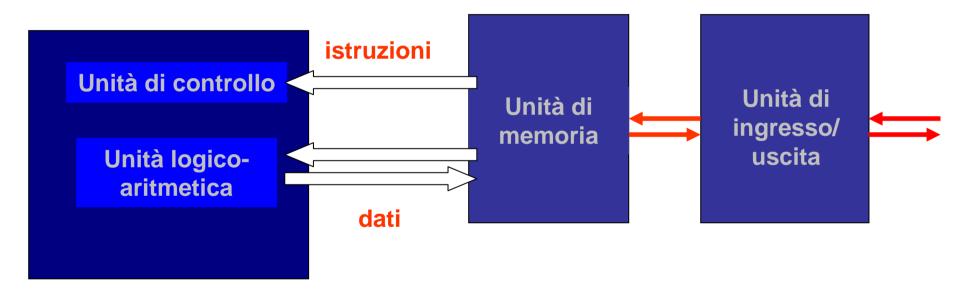

L'esecutore deve essere in grado di:

- intepretare correttamente la sequenza di comandi
- eseguire ognuno dei comandi forniti
- memorizzare informazioni su opportuni supporti che permettano di accedere alle informazioni memorizzate e modificarle

Nota:

l'esecutore non è necessariamente consapevole di quello che sta facendo.

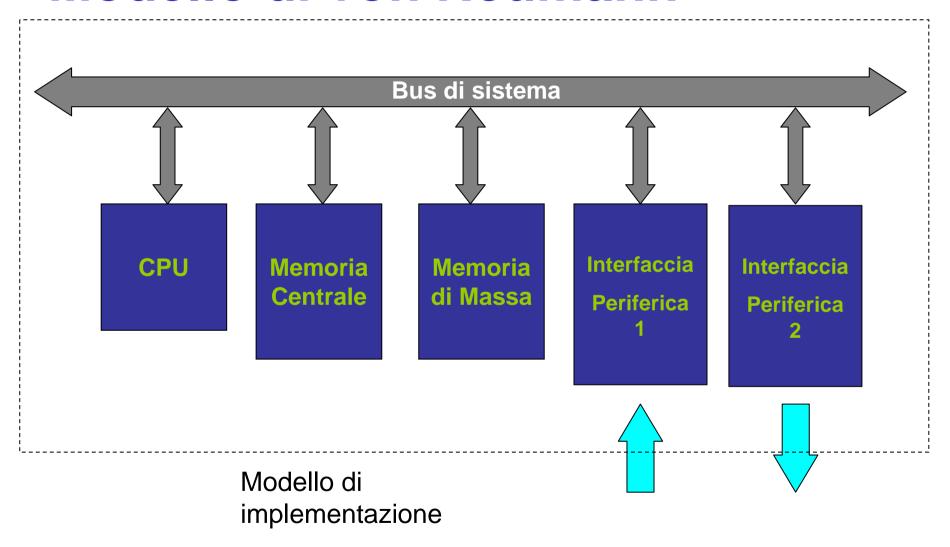
Un esecutore "umano"



F. Tortorella

Corso di Elementi di Informatica 2007/2008

Università degli Studi di Cassino


Un esecutore non umano

Differenze tra i due tipi di esecutori:

- rappresentazione delle istruzioni
- rappresentazioni dei dati

Modello di von Neumann

F. Tortorella

Corso di Elementi di Informatica 2007/2008

Università degli Studi di Cassino

